K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2017

thêm điều kiện: x,y nguyên
\(\frac{x}{2}-\frac{3}{y}=\frac{5}{6}\Rightarrow\frac{xy-6}{2y}-\frac{5}{6}=0\Rightarrow\frac{3xy-18-5y}{6y}=0\Rightarrow y\left(3x-5\right)-18=0\Rightarrow\left(3x-5\right)y=18\)
\(\Rightarrow\left(3x-5\right);y\inƯ\left(18\right)=\left(-18;-9;-6;-3;-2;-1;1;2;3;6;9;18\right)\)
Ta có bảng sau:
 

3x-5-18-9-6-3-2-11236918
x (loại)(loại)-1loại1loại2loạiloạiloạiloạiloại
y-1-2-3-6-9-181896321
     chọn  chọn     

Vậy có 2 giá trị (x;y) =(1;-9);(2;18) thõa mãn.

2 tháng 2 2017

nhầm
Có 3 giá trị (x;y)= (-1;-3);(1;-9);(2;18)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

15 tháng 12 2016

a) Vì x và y là 2 đại lượng tỉ lệ thuận

=> y=kx và x=1/k.y

hay 6=k.2

=> k=3

=>y=3x

=>x=1/3y

b) y=3x

c) khó vẽ lắm

 

 

14 tháng 10 2017

1.

Theo bài ra ta có:

\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x + y - z = 10

Ta có:

\(\frac{x}{8}=\frac{y}{12},\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Suy ra:

x = 2 . 8 = 16

y = 2 . 12 = 24

z = 2 . 15 = 30

2/

Đặt \(\frac{x}{2}=\frac{y}{5}=k\)

Ta có :x = 2k ; y = 5k

=>x . y = 2k . 5k = 10k2 = 10 => k= 1 => k = ±1

Thay k = 1 ta có : x = 2 . 1 = 2     ;      y = 5 . 1 = 5

Thay k = -1 ta có : x = 2 . (-1) = -2    ;    y = 5 . (-1) = -5

Vậy x = ±2   ;  y = ±5

3/

Giải:

Gọi số học sinh khối 6,7,8,9 lần lượt là a,b,c,d .

Theo bài ra ta có:

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}\) và b - d = 70

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{9}=\frac{b}{8}=\frac{c}{7}=\frac{d}{6}=\frac{b-d}{8-6}=\frac{70}{2}=35\)

Suy ra :

a = 35 . 9 = 315

b = 35 . 8 = 280

c = 35 . 7 = 245

d = 35 . 6 = 210

Vậy số học sinh khối 6,7,8,9 lần lượt là 315;280;245;210 .

15 tháng 12 2016

ai đề

15 tháng 12 2016

sai đề

13 tháng 12 2017

Theo đề, ta có: \(\frac{x}{2}=\frac{y}{-5}\)và \(x-y=-7\)

Theo TC dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)

\(\Leftrightarrow\hept{\begin{cases}x=-1.2=-2\\y=-1.-5=5\end{cases}}\)

13 tháng 12 2017

a.x=12 ,y=16

3 tháng 2 2017

Theo đầu bài ta có:
\(\frac{x}{2}-\frac{3}{y}=\frac{5}{6}\)
\(\Rightarrow\frac{xy}{2y}-\frac{6}{2y}=\frac{5}{6}\)
\(\Rightarrow\frac{xy-6}{2y}=\frac{5}{6}\)
\(\Rightarrow6\left(xy-6\right)=5\cdot2y\)
\(\Rightarrow6xy-36=10y\)
\(\Rightarrow6xy-10y=36\)
\(\Rightarrow3xy-5y=18\)
\(\Rightarrow y\left(3x-5\right)=18\)
Ta thấy do 18 chia hết cho 3x - 5 nên  \(3x-5\inƯ\left(18\right)=\left\{-18;-9;-6;-3;-2;-1;1;2;3;6;9;18\right\}\)
Mà ta thấy \(3x-5=3x-6+1=3\left(x-2\right)+1\) là số chia cho 3 dư 1.
Từ 2 điều trên suy ra: \(3x-5\in\left\{-2;1\right\}\)
- TH1: \(\hept{\begin{cases}3x-5=-2\\y=\frac{18}{3x-5}\end{cases}}\Rightarrow\hept{\begin{cases}3x=3\\y=\frac{18}{-2}\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-9\end{cases}}\)
- TH2: \(\hept{\begin{cases}3x-5=1\\y=\frac{18}{3x-5}\end{cases}}\Rightarrow\hept{\begin{cases}3x=6\\y=\frac{18}{1}\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=18\end{cases}}\)
Vậy x = 1  ;  y = -9  hoặc  x = 2  ;  y = 18.

8 tháng 7 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

Vậy \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=> x = 16; y = 24; z = 30

8 tháng 7 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\) (2)

Từ (1) và (2)

=> \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x+y-z=10\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\frac{x}{8}=2\Rightarrow x=8\times2=16\)

\(\frac{y}{12}=2\Rightarrow y=12\times2=24\)

\(\frac{z}{15}=2\Rightarrow z=2\times15=30\)