Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}=\frac{y}{7}\)và \(x+y=36\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{36}{12}=3\)
\(\Rightarrow\)\(\frac{x}{7}=2\)
\(x=2.7=14\)
\(\Rightarrow\)\(\frac{y}{15}=2\)
\(y=2.15=30\)
Vậy \(x=14;y=30\)
Cho mình sửa lại, mình nhầm ở chỗ x và y:
\(\frac{x}{5}=\frac{y}{7}\)và \(x+y=36\)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{36}{12}=3\)
\(\hept{\begin{cases}\frac{x}{5}=3\\\frac{y}{7}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.5=15\\y=3.7=21\end{cases}}}\)
Vậy: \(x=15;y=21\)
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}\text{ và }2x-y+z=36\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{2x-y+z}{2.3-5+7}=\dfrac{36}{8}=\dfrac{9}{2}\)
\(\Rightarrow x=\dfrac{9.3}{2}=\dfrac{27}{2}\)
\(y=\dfrac{9.5}{2}=\dfrac{45}{2}\)
\(z=\dfrac{9.7}{2}=\dfrac{63}{2}\)
Tìm cac số x;y;z biết rằng:\(\frac{x-y}{10}=\frac{y+x}{5};\frac{x+y}{7}=\frac{y-z}{8}\) và x-2y+z=36
làm giúp mk bài này nhá 0+1+2+...+2017 có bao nhiêu số hạng
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y}{5-6}=\frac{36}{-1}=-36\)
Làm nốt nhé !
Ta có :x:y:z=5:6:7 \(\Rightarrow\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\) và x+y+z=36
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x+y+z}{5+6+7}=\frac{36}{18}=2\)
Suy ra : \(\frac{x}{5}=2\Rightarrow2.5=10\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{7}=2\Rightarrow z=2.7=14\)
Ta có :x:y:z=5:6:7 $\Rightarrow\frac{x}{5}=\frac{y}{6}=\frac{z}{7}$⇒x5 =y6 =z7 và x+y+z=36
Áp dụng tính chất dãy tỉ số bằng nhau :
$\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x+y+z}{5+6+7}=\frac{36}{18}=2$x5 =y6 =z7 =x+y+z5+6+7 =3618 =2
Suy ra : $\frac{x}{5}=2\Rightarrow2.5=10$x5 =2⇒2.5=10
$\frac{y}{6}=2\Rightarrow y=2.6=12$y6 =2⇒y=2.6=12
$\frac{z}{7}=2\Rightarrow z=2.7=14$z7 =2⇒z=2.7=14
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{18}{9}=2\)
x/2=2=>4
y/3=2=>6
z/4=2=>8
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
x/5=6=>30
y/6=6=>36
z/7=6=>42
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\) =>x=6.5=30;y=6.6=36;z=6.7=42
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
`x/y=5/7`
`=>x/5=y/7`
mà `x+y=36` nên áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{36}{12}=3\\ =>\dfrac{x}{5}=3=>x=3\cdot5=15\\ =>\dfrac{y}{7}=3=>y=3\cdot7=21\)
Ta có: `x/y=5/7 -> x/5=y/7`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/5=y/7=(x+y)/(5+7)=36/12=3`
`-> x/5=y/7=3`
`-> x=3*5=15, y=3*7=21`