\(\sqrt{y-1}+\sqrt{\left|x-y+3\right|+3}=\sqrt{3}\)3

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

Mình sửa lại chút nhé. tìm x,  y là các số hữu tỉ

18 tháng 6 2017

Ta có : \(9^{x-1}=\frac{1}{9}\)

=> \(9^{x-1}=9^{-1}\)

=> x - 1 = -1

=> x = 0 

ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi 

=> 

18 tháng 6 2017

Cảm ơn bạn nha. Còn mấy phần kia bạn biết làm không?

25 tháng 7 2016

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

\(\Rightarrow\sqrt{y\left(2x-y\right)}.\sqrt{z\left(2y-z\right)}.\sqrt{x\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{xyz}.\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=xyz\)

\(\Rightarrow\sqrt{\left(2x-y\right)\left(2y-z\right)\left(2z-x\right)}=\sqrt{xyz}\)

=>(2x-y)(2y-z)(2z-x)=xyz

=>(2x-y)2(2y-z)2(2z-x)2=x2y2z2

=>8(2x-y)2(2y-z)2(2z-x)2=8x2y2z2

(3-x2)(3-y2)(3-z2)

=3x2y2+3y2z2+3z2x2-x2y2z2

sau đó phân tích cái 8(2x-y)2(2y-z)2(2z-x)2

8 tháng 11 2018

giusp mình nhé mình đang cần lắm

20 tháng 11 2016

\(\sqrt{\left(x-\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)}+\left|x-y-z\right|=0\)

\(\Leftrightarrow\left|x-\sqrt{5}\right|+\left|y+\sqrt{3}\right|+\left|x-y-z\right|=0\)

Ta có \(\hept{\begin{cases}\left|x-\sqrt{5}\right|\ge0\\\left|y+\sqrt{3}\right|\ge0\\\left|x-y-z\right|\ge0\end{cases}}\)

=>  \(VT\ge0\)

Dấu = xảy ra khi

\(\hept{\begin{cases}x-\sqrt{5}=0\\y+\sqrt{3}=0\\x-y-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\sqrt{5}\\y=-\sqrt{3}\\z=\sqrt{5}+\sqrt{3}\end{cases}}\)

3: |2x-1|=|x+1|

=>2x-1=x+1 hoặc 2x-1=-x-1

=>x=2 hoặc 3x=0

=>x=2 hoặc x=0

4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)