K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2021

Ta có: \(\frac{x}{5}\)\(\frac{y}{3}\)và x2-y2=4

=> \(\frac{x^2}{25}\)\(\frac{y^2}{9}\)

Áp dụng t/c DTSBN, ta có:

\(\frac{x^2}{25}\)\(\frac{y^2}{9}\)\(\frac{x^2-y^2}{25-9}\)\(\frac{4}{16}\)\(\frac{1}{4}\)

=> \(\frac{x}{5}\)\(\frac{y}{3}\)\(\frac{1}{4}\)

=> x=\(\frac{5}{4}\); y=\(\frac{3}{4}\)

30 tháng 7 2023

a,x.y=3=1x3=3x1=-1x(-3)=-3x(-1).

Vậy (x,y)=(1,3)=(3,1)=(-1,-3)=(-3,-1)

b,x.(y+1)=5=1x5=5x1=-1x(-5)=-5x(-1)

=>

       x       1          5       -1       -5
      y+1       5          1       -5       -1
       y       4          0        -6       -2

Vậy (x,y)=(1,4)=(5,0)=(-1,-6)=(-1,-2).

c,(x-2)(y+3)=7=1x7=7x1=-1x(-7)=-7(-1)

=>

       x-2        1           7         -1         -7
      y+3        7          1         -7         -1
       x       3          9         1        -5
      y        4         -2         -10         -4

Vậy (x,y)=(3,4)=(9,-2)=(1,-10)=(-5,-4).

15 tháng 8 2020

\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)   => \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)(1)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

TỪ(1) => \(\frac{3x+3+2y+4+z+2}{6+6+4}=\frac{\left(3x+2y+z\right)+\left(3+4+2\right)}{16}\)

=\(\frac{105+9}{16}=\frac{57}{8}\)

b)tương tự câu a

15 tháng 8 2020

a) Ta có :\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+2}{4}\)

=> \(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}\)

Lại có 3x - 2y + z = 105

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{3x+3}{6}=\frac{2y+4}{6}=\frac{z+2}{4}=\frac{3x+3-2y-4+z+2}{6-6+4}=\frac{\left(3x-2y+z\right)+3-4+2}{4}\) 

                                                                                                                      \(=\frac{105+1}{4}=\frac{106}{4}=26,5\)

=> x = 52 ; y = 77,5 ; z = 104

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)

Đặt \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=k\Rightarrow\hept{\begin{cases}x^2=4k\\y^2=9k\\z^2=16k\end{cases}}\)

Lại có x2 - y2 + 2z2 = 108

=> 4k - 9k + 2.16k = 108

=> -5k + 32k = 108

=> 27k = 108

=> k = 4

=> x = \(\pm\)4 ; y = \(\pm\)6 ; z = \(\pm\)8

Vì \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)=> x ; y ; z cùng dấu

=> các cặp số (x;y;z) thỏa mãn bài toán là (-4;-6;-8) ; (4;6;8)

10 tháng 9 2023

\(a,\left|x-\dfrac{1}{2}\right|+\dfrac{1}{3}=\dfrac{2}{3}\\ \Rightarrow\left|x-\dfrac{1}{2}\right|=\dfrac{2}{3}-\dfrac{1}{3}=\dfrac{1}{3}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{1}{3}\\x-\dfrac{1}{2}=-\dfrac{1}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\\ b,\dfrac{x}{-2}=\dfrac{y}{5}=\dfrac{x-y}{-2-5}=\dfrac{14}{-7}=-2\\ \Rightarrow x=-2.\left(-2\right)=4;y=-2.5=-10\)

10 tháng 9 2023

x-y=-14 nhé

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

a)      \(x + y = 30;\dfrac{x}{2} = \dfrac{y}{3}\) áp dụng tính chất của tỉ lệ thức ra có :

\( \Rightarrow \dfrac{{x + y}}{{2 + 3}} = \dfrac{x}{2}\)

\( \Rightarrow \dfrac{{30}}{5} = \dfrac{x}{2}\)

\( \Rightarrow 30.2 = x.5\)

\(\begin{array}{l} \Rightarrow 60:5 = x\\ \Rightarrow x = 12\\ \Rightarrow 14 + y = 30\\ \Rightarrow y = 18\end{array}\)    ( thay x vừa tìm được = 12 vào x + y = 30 để tìm ra y )

Vậy x = 12 y = 18

b)      Ta có : \(\dfrac{x}{5} = \dfrac{y}{{ - 2}}\)= \(\dfrac{{x - y}}{{5 + 2}}\)( áp dụng tính chất tỉ lệ thức ) (1)

Mà theo đề bài x – y = -21

Thay -21 vào (1) ta có : \(\dfrac{{ - 21}}{7} =  - 3\) \( = \dfrac{x}{5}\)

\( \Rightarrow \)x = (-3).5

\( \Rightarrow \)x = -15

Thay x bằng -15 ta có -15 – y = -21

\( \Rightarrow \)y = -15 + 21

\( \Rightarrow \)y = 6

Vậy x = -15 và y = 6

AH
Akai Haruma
Giáo viên
28 tháng 5 2022

Lời giải:
Ta có: $(x-2)^2\geq 0$ với mọi $x$

$|y^2-4|\geq 0$ theo tính chất trị tuyệt đối

Do đó $(x-2)^2+|y^2-4|\geq 0$. Để tổng $(x-2)^2+|y^2-4|=0$ thì:

$(x-2)^2=|y^2-4|=0$

$\Rightarrow x=2; y=\pm 2$

30 tháng 5 2022

Ta có (x - 2)^2 + |y^2 - 4| = 0 (1)

Mà \(\left(x-2\right)^2\ge0,\left|y^2-4\right|\ge0\) với mọi x,y nên (1) xảy ra <=> 

(x - 2)^2 = |y^2 - 4| = 0 <=> x - 2 = y^2 - 4 = 0 <=> x = 2 và y = 2,-2

Vậy... 

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

3 tháng 7 2021

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)

18 tháng 9 2023

mn nhanh lên ạaa!!!

Đề bài cụ thể là gì vậy ạ

18 tháng 9 2023

Cô làm rồi mà em 

18 tháng 9 2023

TA CÓ 0=02

⇒X-11+Y+X+4-Y=0

⇒(X+X)+(-11+4)+(Y-Y)=0

⇒2X+(-7)+0=0

⇒2X=0-(-7)

⇒2X=7

⇒X=7:2

⇒X=3,5

VẬY X =3,5

17 tháng 2 2022

\(\dfrac{x}{2}=\dfrac{z}{3};\dfrac{y}{5}=\dfrac{z}{2}\Rightarrow\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}\)

Theo tc dãy tỉ số bằng nhau 

\(\dfrac{x}{4}=\dfrac{z}{6}=\dfrac{y}{15}=\dfrac{x+y+z}{4+6+15}=\dfrac{50}{25}=2\Rightarrow x=8;y=12;y=30\)