\(\dfrac{x-y}{x+y}\) = \(\dfrac{3}{7}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

\(\frac{x-y}{x+y}=\frac{3}{7}\Rightarrow 7(x-y)=3(x+y)\)

\(\Leftrightarrow 4x=10y\Rightarrow y=0,4x\)

Lại có: \(x^3y^3=1000\Leftrightarrow (xy)^3=1000\Rightarrow xy=\sqrt[3]{1000}=10\)

Thay \(y=0,4x\) ta có:

\(x.0,4x=10\Leftrightarrow x^2=25\Rightarrow x=\pm 5\)

Nếu \(x=5\rightarrow y=0,4x=2\)

Nếu \(x=-5\rightarrow y=0,4x=-2\)

8 tháng 7 2018

ta có x^3.y^3=(x.y)^3=1000

<=>(x.y)^3=10^3

<=>x.y=10

ta có (x-y)/(x+y)=3/7 <=> 7x-7y=3x+3y

<=> 4x=10y

<=>x=y.5/2

thay x= y.5/2 vào x.y=10 ta có:

y.5/2.y=10

<=>y^2=4

<=>y=2 hoặc y=-2

với y=2 ta có x=5, với y=-2 ta có x=-5

\(\dfrac{x-y}{x+y}=\dfrac{3}{7}\)

\(\Leftrightarrow7x-7y=3x+3y\)

=>4x=10y

=>2x=5y

hay x/5=y/2

Đặt x/5=y/2=k

=>x=5k; y=2k

\(x^2y^2=1600\)

\(\Leftrightarrow10k^2=1600\)

\(\Leftrightarrow k^2=160\)

TH1: \(k=4\sqrt{10}\)

\(x=20\sqrt{10};y=8\sqrt{10}\)

TH2: \(k=-4\sqrt{10}\)

\(x=-20\sqrt{10};y=-8\sqrt{10}\)

17 tháng 7 2018

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}=\dfrac{\left(y^2-x^2\right)-\left(y^2+x^2\right)}{3+5}=\dfrac{\left(y^2-x^2\right)-\left(y^2-x^2\right)}{3-5}\Rightarrow\dfrac{2y^2}{8}=\dfrac{-2x^2}{-2}\Rightarrow\dfrac{y^2}{4}=x^2\Rightarrow y^2=4x^2\)

Ta có: \(x^{10}.y^{10}=x^{10}.\left(4x^2\right)^5=1024.x^{20}=1024\Rightarrow x^{20}=1\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

\(\Rightarrow y^2=4\Rightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\)\(y\in\left\{4;-4\right\}\)

17 tháng 7 2018

\(\dfrac{y^2-x^2}{3}=\dfrac{y^2+x^2}{5}\)

\(\Leftrightarrow5\left(y^2-x^2\right)=3\left(y^2+x^2\right)\)

\(\Leftrightarrow5y^2-5x^2=3y^2+3x^2\)

\(\Leftrightarrow2y^2=8x^2\)

\(\Leftrightarrow y^2=4x^2\)

\(\Leftrightarrow y^{10}=1024.x^{10}\)

\(x^{10}.y^{10}=1024\)

\(\Leftrightarrow x^{10}.1024x^{10}=1024\)

\(\Leftrightarrow x^{20}=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

+)Với \(x=1\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

+) Với \(x=-1\Leftrightarrow y^{10}=1024\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy...

AH
Akai Haruma
Giáo viên
18 tháng 7 2018

Lời giải:

Ta có: \(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\Rightarrow 5(y^2-x^2)=3(y^2+x^2)\)

\(\Rightarrow 2y^2=8x^2\Rightarrow y^2=4x^2\)

\(\Rightarrow y^{10}=4^5x^{10}=(2x)^{10}\)

Do đó:

\(x^{10}y^{10}=x^{10}.(2x)^{10}=1024\)

\(\Leftrightarrow (2x^2)^{10}=1024=2^{10}=(-2)^{10}\)

\(\Rightarrow \left[\begin{matrix} 2x^2=2\\ 2x^2=-2(\text{vô lý})\end{matrix}\right.\)

\(\Rightarrow x^2=1\Rightarrow x=\pm 1\)

\(y^2=4x^2=4\Rightarrow y=\pm 2\)

Vậy \((x,y)=(1,-2); (1,2); (-1,2); (-1,-2)\)

2 tháng 5 2017

Bài 1:

a)

\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)

b)

\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)

c)

\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)

d)

\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)

e)

\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)

f)

\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)

g)

\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)

h)

\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)

i)

\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)

28 tháng 6 2017

bài 3:

a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)

A/D tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

28 tháng 6 2017

Theo mình thì bạn nên đăng từng câu hỏi chứ đăng 1 lượt thế này có 1 số bạn thấy dài quá ko mún làm và mình cũng ở trong số đó.vui

15 tháng 5 2017

a) \(x\)=1 \(y\)= 12

b)\(x\)=4 \(y\)= 14

hoặc \(x\)= 6 \(y \)=21

...

19 tháng 2 2018

umk

Bài 1: 

a: =>13x+8=9x+20

=>4x=12

hay x=3

b: \(\Leftrightarrow5x-7=-8-11-3x\)

=>5x-7=-3x-19

=>8x=-12

hay x=-3/2

c: \(\Leftrightarrow\left[{}\begin{matrix}12x-7=5\\12x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{6}\end{matrix}\right.\)

e: =>3x+1=-5

=>3x=-6

hay x=-2

9 tháng 1 2018

c, Vì \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|5y+20\right|\ge0\end{cases}\Rightarrow\left|x+3\right|+\left|5y+20\right|\ge0}\)

Mà |x+ 3| + |5y + 20|  \(\le\) 0

\(\Rightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|5y+20\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-5\end{cases}}}\)

d, 5xy - 5x + y = 5

<=> 5x(y - 1) + (y - 1) = 5 - 1

<=> (5x + 1)(y - 1) = 4

=> 5x + 1 và y - 1 thuộc Ư(4) = {1;-1;2-2;4;-4}

Ta có bảng:

5x+11-12-24-4
y-14-42-21-1
x0-2/5 (loại)1/5 (loại)-3/5 (loại)3/5 (loại)-1
y5-33-120

Vậy các cặp (x;y) là (0;5);(-1;0)

e, Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2\ge0}\)

Mà (x+1)2+(y-1)2 \(\le\) 0

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)