Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3^2}=\frac{y^2}{5^2}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)
suy ra: \(\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2\cdot\frac{1}{4}}=\frac{3}{2}\)
\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2\cdot\frac{1}{4}}=\frac{5}{2}\)
b) 4x = 3y => x = \(\frac{3y}{4}\)
thay vào x.y , ta có:
\(\frac{3y}{4}\cdot y=12\Rightarrow\)\(\frac{3y^2}{4}=12\Rightarrow3y^2=12\cdot4=48\Rightarrow y^2=48:3=16\Rightarrow y=4\) và \(y=-4\)
x . y = 12
=> x = 12 : y = 12 : 4 = 3
và x = 12 : y = 12 : (-4) = (-3)
Vậy y = +4, x = +3
\(\frac{x}{5}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=5k\\y=7k\end{cases}}\)
\(x\cdot y=140\)
\(\Rightarrow5k\cdot7k=140\)
\(\Rightarrow35k^2=140\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm2\)
\(k=2\Rightarrow\hept{\begin{cases}x=2\cdot5=10\\y=2\cdot7=14\end{cases}}\)
\(k=-2\Rightarrow\hept{\begin{cases}x=-2\cdot5=-10\\y=-2\cdot7=-14\end{cases}}\)
\(7x=3y\)
\(\Rightarrow\frac{x}{3}=\frac{y}{7}=k\Rightarrow\hept{\begin{cases}x=3k\\y=7k\end{cases}}\)
\(\Rightarrow x\cdot y=3k\cdot7k=2100\)
\(\Rightarrow21k^2=2100\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
\(k=10\Rightarrow\hept{\begin{cases}x=10\cdot3=30\\y=10\cdot7=70\end{cases}}\)
\(k=-10\Rightarrow\hept{\begin{cases}x=-10\cdot3=-30\\y=-10\cdot7=-70\end{cases}}\)
\(\frac{x}{3}=\frac{y}{5}=\frac{-4x}{-12}=\frac{3y}{15}=\frac{-4x+3y}{-12+15}=\frac{12}{3}=4\Rightarrow x=12;y=20\)
\(\Rightarrow\frac{-4x}{-12}=\frac{3y}{15}\)
+ Áp dụng tính chất bằng nhau ta có :
\(\frac{-4x}{-12}=\frac{3y}{15}=\frac{-4x+3y}{-12+15}=\frac{12}{3}=4\)
Suy ra : \(\frac{-4x}{-12}=4\Rightarrow x=132\)
\(\frac{3y}{15}=4\Rightarrow y=20\)
Vậy \(x=132;y=20\)
Chúc bạn học tốt !!!
e, ta có \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x^2}{9}=\frac{y^2}{4}\)
AĐTCTSBN ta có \(\frac{x^2}{9}=\frac{y^2}{4}=\frac{x^2+y^2}{9+4}=\frac{52}{13}=4\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot3=6\\y=2\cdot2=4\end{cases}}\)
a) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{7}=\frac{y}{4}=\frac{x-y}{7-4}=\frac{30}{3}=10\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=10\Leftrightarrow x=70\\\frac{y}{4}=10\Leftrightarrow y=40\end{cases}}\)
b) Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+3y+1+5y+1+7y}{12+5x+4x}=\frac{3+15y}{12+5x+4x}=\frac{3\left(1+5y\right)}{2.3.2+5x+4x}=\frac{1+5y}{4+9x}=\frac{1+5y}{5x}\)<=> 4 + 9x = 5x
....
a/ Từ giả thiêt ta có \(\frac{x-9}{15}=\frac{y-12}{20}=\frac{z-24}{40}\Leftrightarrow\frac{x}{15}-\frac{3}{5}=\frac{y}{20}-\frac{3}{5}=\frac{z}{40}-\frac{3}{5}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{40}\). Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{40}=k\)
\(\Rightarrow\begin{cases}x=15k\\y=20k\\z=40k\end{cases}\)
Theo đề bài : \(xy=1200\Leftrightarrow15k.20k=1200\Leftrightarrow k^2=4\Leftrightarrow k=\pm2\)
Tới đây dễ rồi nhé :)
b/ \(\frac{1+5y}{5x}=\frac{1+7y}{4x}\Leftrightarrow\frac{1+5y}{5}=\frac{1+7y}{4}\Leftrightarrow\frac{7+35y}{35}=\frac{5+35y}{20}=\frac{7+35y-5-35y}{35-20}=\frac{2}{15}\)
\(\Rightarrow y=-\frac{1}{15}\)
Thay y vào \(\frac{1+3y}{12}=\frac{1+5y}{5x}\) tìm được x = 2
4x=3y nên x/3 = y/4 hay \(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x.y}{3.4}=\frac{12}{12}=1\)(tất cả đều mũ hai lên)
Vậy x^2 = 9 và y^2 = 16
Ta có cặp số x,y như sau:
\(\left\{x;y\right\}=\left\{3;4\right\},\left\{-3;-4\right\}\)
Theo đề ta có:
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Đặt : \(\frac{x}{3}=\frac{y}{4}=k\)
=) x=3k
=) y=4k
\(x\times y=12\)
\(3k\times4k=12\)
\(12\times k^2=12\)
\(k^2=12\)
k= 1 ; -1
Với k=1 thì x=3 * 1=3
y=4*1=4
Với k=-1 thì x=-3
y=-4