K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

Đè như ri phải ko 5x2+9y2-12xy+24x-48y+80=0

30 tháng 7 2021

không đề như mình đăng

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

15 tháng 7 2018

\(4x^2-4x+1+9y^2-6y+1+16z^2-8z+1=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\x=\frac{1}{4}\end{cases}}\)

vay ................................................

1 tháng 8 2019

Ta có : 

4x+ 9y2 + 16z- 4x - 6y - 8z + 3 = 0

( 2x )  + ( 3y)2 + ( 4z)2 - 4x - 6y - 8z + 3 = 0

\([\left(2x\right)^2-2.2x+1]+[\left(3y\right)^2-2.3y+1]+[\left(4z\right)^2-2.4z+1]=0\)=0

( 2x-1) + ( 3y -1 )2 + ( 4z - 1) 2 = 0

Mà ( 2x-1)\(\ge\)0 với mọi x

     ( 3y-1 )2 \(\ge0\)với mọi y

      ( 4z - 1) \(\ge0\)với mọi z 

 nên \(\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}\)

 Vậy x = 1/2 ; y = 1/3 ; z = 1/4 

\(4x^2-4x+9y^2-6y+16z^2-8z+3=0\) 

\(\left(4x^2-4x+1\right)+\left(9y^2-6y+1\right)+\left(16z^2-8y+1\right)=0\) 

\(\left(2x-1\right)^2+\left(3y-1\right)^2+\left(4z-1\right)^2=0\) 

\(=>\hept{\begin{cases}\left(2x-1\right)^2=0\\\left(3y-1\right)^2=0\\\left(4z-1\right)^2=0\end{cases}=>\hept{\begin{cases}2x-1=0\\3y-1=0\\4z-1=0\end{cases}=>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\\z=\frac{1}{4}\end{cases}}}}\)

Vậy...

NV
29 tháng 9 2020

Đa thức này ko phân tích thành nhân tử được :)

Nếu số 3 ở cuối là \(-3\) thì phân tích được