K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2015

Bạn xem ở http://olm.vn/hoi-dap/question/106067.html

4 tháng 7 2015

hoi-dap/question/106067.html

1 tháng 1 2018

2x2 + y2 -6x + 2xy - 2y +5 =0

=> x2 + 2xy + y2 + - 2x - 2y + 1 + x2 - 4x + 4 = 0

=> ( x + y)2 - 2( x + y) + 1 + ( x - 2)2 = 0

=> ( x + y - 1)2 +( x - 2)2 = 0

Do : ( x + y - 1)2 +( x - 2)2 lớn hơn hoặc bằng 0

Suy ra :

*( x + y - 1)2 = 0 => ( 2 - 1 + y)2 = 0 => y = -1

* (x - 2)2 = 0 => x = 2

Vậy,...

25 tháng 2 2020

Ta có :

\(2x^2+y^2-6x+2xy-2y+5=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)^2+\left(x-2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+y-1\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-1\\x=2\end{cases}}\)

5 tháng 10 2015

a) VÌ 2x2 + y2 - 2y - 6x + 2xy + 5 = 0 nên

2(2x2 + y2 - 2y - 6x + 2xy + 5) = 0

4x^2+2y^2-4y-12x+4xy+10=0

(4x^2+4xy+y^2)-6(2x+y)+9+(y^2-2y+1)=0

(2x+y)^2-6(2x+y)+9+(y-1)^2=0

(2x+y-3)^2+(y-1)^2=0(*)

vì (2x+y-3)^2>=0 và(Y-1)^2>=0nên (*) xảy ra khi

(2x+y-3)^2=0<=>2x-2=0<=>x=1

(Y-1)^2=0<=>y=1

 

 

28 tháng 12 2016

x=1 y=1

5 tháng 10 2019

a) \(2x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow x^2+x^2+y^2+2xy+10x+25=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+10x+25\right)=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(x+y\right)^2\ge0\forall x\\\left(x+5\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x+y\right)^2+\left(x+5\right)^2\ge0\forall x\)

Vậy đẳng thức xảy ra\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=5\end{cases}}\)

5 tháng 10 2019

b)\(x^2+3y^2+2xy-2y+1=0\)

\(\Leftrightarrow x^2+y^2+2y^2+2xy-2y+\frac{1}{2}+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(2y^2-2y+\frac{1}{2}\right)+\frac{1}{2}=0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

Vì \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2\ge0\)

nên \(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)

\(\left(x+y\right)^2+\left(\sqrt{2}y-\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}=0\)

nên pt vô nghiệm

5 tháng 12 2018

Đề sai

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)