K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 2 2016

1 nhân 3 hay

29 tháng 2 2016

+ x =0 ; 1 + 3y = 1 => loại

=> x > 0

=>VP = 36x là số chẵn

VT = 2x + 3y cũng chẵn => Vô lí vì 2x chãn ; 3y lẻ 

vậy không có x; y nào thỏa mãn

4 tháng 3 2016

\(2^{x+1}.3^y=36^x\)

=> \(2^{x+1}.3^y=\left(2^2.3^2\right)^x\)

=> \(2^{x+1}.3^y=2^{2x}.3^{2x}\)

=> x + 1 = 2x; y = 2x

=> x = 1; y = 2.1 = 2

Vậy x = 1; y = 2.

2 tháng 3 2019

lấy máy tính anh ơi anh có biết cách tìm x trên máy tính ko

ko ko và ko

21 tháng 9 2015

|x-3.5| - |y-1.3| = 0 

=> |x - 3,5| = |y - 1,3|

TH1 : x - 3,5 = y - 1,3

<=> x - y = 2,2

Th2 : x - 3,5 = -(y - 1,3)

<=> x - 3,5 = -y + 1,3

<=> x + y = 2,2 

2 tháng 9 2023

Ta có: \(y^2\ge0\forall y\in Z\)

\(\Rightarrow-y^2\le0\forall y\in Z\)

\(\Rightarrow36-y^2\le36\forall y\in Z\)

mà \(36-y^2=8\left(x-2010\right)^2\) (*)

nên \(8\left(x-2010\right)^2\le36\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\le\dfrac{36}{8}< 5\)

Mặt khác: \(\left(x-2010\right)^2\ge0\forall x\in Z\)

\(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;2;3;4\right\}\)   (1)

Lại có: \(x\in Z\) nên \(x-2010\in Z\) (2)

Từ (1) và (2) \(\Rightarrow\left(x-2010\right)^2\in\left\{0;1;4\right\}\)

+, Với \(x-2010=0\Leftrightarrow x=2010\) , (*) trở thành:

\(36-y^2=0\)

\(\Rightarrow y^2=36\Rightarrow\left[{}\begin{matrix}y=6\\y=-6\end{matrix}\right.\left(tm\right)\)

+, Với \(\left(x-2010\right)^2=1\Leftrightarrow\left[{}\begin{matrix}x-2010=1\\x-2010=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2011\\x=2009\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\)

\(\Rightarrow y^2=28\Rightarrow y=\pm\sqrt{28}\left(ktm\right)\)

+, Với \(\left(x-2010\right)^2=4\Leftrightarrow\left[{}\begin{matrix}x-2010=2\\x-2010=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2010\\x=2008\end{matrix}\right.\)

Khi đó: (*) ⇔ \(36-y^2=8\cdot4\)

\(\Rightarrow y^2=4\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\left(tm\right)\)

Vậy ...

AH
Akai Haruma
Giáo viên
8 tháng 10 2023

Lời giải:

$y^2=36-8(x-2024)^2\leq 36$ (do $8(x-2024)^2\geq 0$)

$\Rightarrow y\leq 6$

Lại có: $y^2=36-8(x-2024)^2$ chẵn nên $y$ chẵn

$\Rightarrow y\in\left\{0; 2; 4; 6\right\}$

Nếu $y=0$ thì $8(x-2024)^2=36$

$\Rightarrow (x-2024)^2=\frac{36}{8}\not\in\mathbb{N}$ (loại) 

Nếu $y=2$ thì $8(x-2024)^2=36-y^2=36-2^2=32$

$\Rightarrow (x-2024)^2=4\Rightarrow x-2024=\pm 2$

$\Rightarrow x=2026$ hoặc $x=2022$ (tm) 

Nếu $y=4$ thì $8(x-2024)^2=36-4^2=20$

$\Rightarrow (x-2024)^2=\frac{20}{8}\not\in\mathbb{N}$ (loại) 

Nếu $y=6$ thì $8(x-2024)^2=36-6^2=0$

$\Rightarrow x-2024=0$

$\Rightarrow x=2024$ (tm)

Vậy............

23 tháng 6 2015

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{36}{6}=6\)

suy ra :\(\frac{x}{3}=6\Rightarrow x=18\)

\(\frac{y}{5}=6\Rightarrow x=30\)

\(\frac{z}{2}=6\Rightarrow z=12\)

bạn bik baj này ruj chứ j

24 tháng 12 2021

a: k=3

b: y=3x

1 tháng 8 2018

Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)

Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)

Mà (x-2010)2 là số chính phương => (x-2010)2=4 hoặc (x-2010)2=1 hoặc (x-2010)2=0

- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)

=>y2 = 4 => y = 2 (y thuộc N)

- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\left(loại\right)\)

- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)

=>y2=36 => y=6 (y thuộc N)

Vậy các cặp (x;y) là (2012;2);(2018;2);(2010;6)

31 tháng 8 2018

Ta có: \(36-y^2=8\left(x-2010\right)^2\Rightarrow8\left(x-2010\right)^2+y^2=36\)

Vì \(y^2\ge0\Rightarrow8\left(x-2010\right)^2\le36\Rightarrow\left(x-2010\right)^2\le\frac{36}{8}\)

Mà \(\left(x-2010\right)^2\)là số chính phương \(\Rightarrow\left(x-2010\right)^2=4\)hoặc \(\left(x-2010\right)^2=1\)hoặc \(\left(x-2010\right)^2=0\)

- Với \(\left(x-2010\right)^2=4\Rightarrow\orbr{\begin{cases}x-2010=2\\x-2010=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=2012\\x=2008\end{cases}}}\)

\(\Rightarrow y^2=4\Rightarrow y=2\left(y\inℕ^∗\right)\)

- Với \(\left(x-2010\right)^2=1\Rightarrow y^2=36-8=28\)(loại)

- Với \(\left(x-2010\right)^2=0\Rightarrow x=2010\)

\(\Rightarrow y^2=36\Rightarrow y=6\left(y\inℕ^∗\right)\)

Vậy các cặp \(\left(x;y\right)\)lần lượt là \(\left(2012;2\right);\left(2018;2\right);\left(2010;6\right)\)