K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017
Mk giúp
31 tháng 12 2017

a) 

Ta có : vì|1/2-1/3+x| lớn hơn hoặc bằng 0 

Còn -1/4-|y| bé hơn hoặc bằng 0

=> ko tồn tại x

b) 

Ta có: |x-y| lớn hơn hoặc bằng 0 và|y+9/25| lớn hơn hoặc bằng 0 mà:

| x-y|+ |y+9/25| =0 => |x-y| =0 và |y+9/25|=0

 Xét |y+9/25| có:

| y+9/25|=0 => y+9/25=0 => y=-9/25

Thay y = -9/25 vào |x-y| =0 => x=-9/25

 Vậy x=y=-9/25

16 tháng 8 2020

ta có \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\forall x\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\forall y\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Leftrightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}}}\)

16 tháng 8 2020

Bài làm:

Ta có: \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\left(\forall x\right)\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\left(\forall y\right)\end{cases}\Rightarrow\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\left(\forall x,y\right)}\)

Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

\(\Rightarrow\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)

14 tháng 9 2016

Ta có :

\(\begin{cases}\left(\frac{1}{2x}-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{cases}\)

Mà : \(\left(\frac{1}{2x}-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

\(\Rightarrow\begin{cases}\left(\frac{1}{2x}-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)

(+) \(\frac{1}{2x}-5=0\)

\(\Rightarrow x=\frac{1}{10}\)

(+) \(y^2-\frac{1}{4}=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}y=\frac{1}{2}\\y=-\frac{1}{2}\end{array}\right.\)

Vậy \(\left(x;y\right)\in\left\{\left(\frac{1}{10};\frac{1}{2}\right);\left(\frac{1}{10};-\frac{1}{2}\right)\right\}\)

14 tháng 9 2016

Do \(\left(\frac{1}{2}x-5\right)^{20}\ge0;\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

=> \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

Mà theo đề bài: \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

=> \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}=0\)

=> \(\begin{cases}\left(\frac{1}{2}x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\)=> \(\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\)=> \(\begin{cases}x=10\\y\in\left\{\frac{1}{2};\frac{-1}{2}\right\}\end{cases}\)

17 tháng 8 2019

Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)

Ta có: (1/2x - 5)20 \(\ge\)\(\forall\)x

         (y2 - 1/4)10 \(\ge\)\(\forall\)y

=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)\(\forall\)x;y

Theo (1) => ko có giá trị x;y t/m

Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0

=> (x - 7)x + 1.[1 - (x - 7)10] = 0

=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)

=> x = 7

hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)

Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)\(\forall\)x

=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x

=>  A \(\ge\)-1 \(\forall\)x

Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6

Vậy Min A = -1 tại x = -1/6

b) Ta có: -(4/9x - 2/5)6 \(\le\)\(\forall\)x

=> -(4/9x - 2/15)6 + 3 \(\le\)\(\forall\)x

=> B \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10

vậy Max B = 3 tại x = 3/10

17 tháng 8 2019

Đúng ko vậy bạn

AH
Akai Haruma
Giáo viên
25 tháng 6

Đề có vấn đề. Bạn xem lại nhé. 

25 tháng 9 2018

làm hộ mik cho