Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+4y2-2x+4y+2=0
<=>x2-2x+1+4y2+4y+1=0
<=>(x-1)2+(2y+1)2=0
<=>x-1=0 và 2y+1=0
<=>x=1 và y=-1/2
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
=> x^3 + 8y^3 = 0 (1)
và x^3 - 8y^3 = 16 (2)
Từ (1) và (2) => 2x^3 = 16 => x^3 = 8 => x = 2
Thay x^3 = 8 và (1) ta có 8 + 8y^3 = 0 => 8y^3 = -8 => Y^3 = -1 => y = -1
VẬy x = 2 ; y = -1
Ta có \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\)<=> \(x^3+8y^3=0\)(1)
và \(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\)<=> \(x^3-8y^3=16\)(2)
Lấy (1) cộng (2)
=> \(2x^3=16\)
<=> \(x^3=8\)
<=> \(x=2\)
Từ (1) <=> \(8y^3=-x^3\)
<=> \(8y^3=-8\)
<=> \(y^3=-1\)
<=> \(y=-1\)
Vậy khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)thì \(\hept{\begin{cases}\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\\\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\end{cases}}\).
\(\left(x+2y\right)\left(x^2-2xy+4y^2\right)=0\Leftrightarrow x^3+8y^3=0\) (1)
\(\left(x-2y\right)\left(x^2+2xy+4y^2\right)=16\Leftrightarrow x^3-8y^3=16\) (2)
TỪ (1) => \(x^3=-8y^3\) thay vào (2)
=> \(x^3+x^3=16\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
mà \(x^3=-8y^3\Rightarrow y=-1\)
vậy x=2 và y=-1
rgthaegƯ mk chỉ giải được phần a thui
x^2 + 2y^2 - 2xy + 2x + 2 - 4y =0
<=>x^2 + y^2 - 2xy+2x-2y+y^2-2y+1+1=0
<=>(x-y)^2+2(x-y)+1+(y-1)^2=0
<=>(x-y+1)^2+(y-1)^2=0
<=>y=1;x=0