Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:Ta có:
\(\left(x-y\right)^2+\left(x+y\right)^2=50\)
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{\left(x-y\right)^2+\left(x+y\right)^2}{\left(3-4\right)^2+\left(3+4\right)^2}=\frac{50}{50}=1\)
\(\Rightarrow\begin{cases}\frac{x}{3}=1\Rightarrow x=3\\\frac{y}{4}=1\Rightarrow y=4\end{cases}\)
Bài 2:Ta có:
\(\left(x+y\right)^3+\left(x-y\right)^3=2960\)
\(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\)
Áp dụng tc dãy tỉ số ta có:
\(\frac{x}{5}=\frac{y}{2}=\frac{\left(x+y\right)^3+\left(x-y\right)^3}{\left(5+2\right)^3+\left(5-2\right)^3}=\frac{2960}{370}=8\)
\(\Rightarrow\begin{cases}\frac{x}{5}=8\Rightarrow x=40\\\frac{y}{2}=8\Rightarrow y=16\end{cases}\)
Vd: sqrt(2) : căn bậc 2 của 2
Mình không biết giải có đúng hay không, nhưng cũng xin góp ý.
pt <=> z=sqrt(2)*sqtr(sprt(2)*Y^3 - X^2 - X + 1) (với x, y, z nguyên)
Suy ra: z nguyên khi và chỉ khi z=2
<=> sqrt(2)*Y^3 - X^2 -X +1 - sqrt(2) = 0 (pt *) (với x, y nguyên)
Khi X nguyên: X^2 + X -1 cũng sẽ nguyên
Suy ra: Điều kiện cần để pt* đúng thì sqrt(2)*Y^3 - sqrt(2) cũng phải nguyên
<=> Y=1
Khi đó:
pt* <=> X^2 + X - 1 = 0 (x nguyên)
pt trên không có nghiệm nguyên.
Vậy: không tồn tại bộ số x, y, z nguyên thổa mãn phương trình đã cho.
Bài 2:
Ta có: \(\left.\begin{matrix} \frac{x}{4} = \frac{y}{5} & & \\ \frac{y}{5} = \frac{z}{2} & & \end{matrix}\right\}\)
=> \(\frac{x}{4} = \frac{y}{5} = \frac{z}{2}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5} = \frac{z}{2} = \frac{x - y + z}{4 - 5 + 2}= \frac{98}{1}= 98\)
=> x = 98 * 4 = 392
y = 98 * 5 = 490
z = 196
Vậy x = 392, y = 490, z = 196
Bài 3:
Gọi x,y lần lượt là số cây trồng của lớp 7A, 7B
Theo đề bài ta có: \(\frac{x}{4} = \frac{y}{5}\) và y - x = 12
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4} = \frac{y}{5}= \frac{y - x}{5 - 4}= \frac{12}{1}= 12\)
=> x = 12 * 4 = 48
y = 12 * 5= 60
Vậy lớp 7A trồng 48 cây
.......lớp 7B trồng 60 cây
\(a,\)
\(y=f\left(3\right)=4.3^2-5=31\)
\(y=f\left(-\frac{1}{2}\right)=4.\left(-\frac{1}{2}\right)^2-5=-4\)
\(b,\)
\(y=f\left(x\right)=4x^2-5\)
\(\Leftrightarrow4.x^2-5=-1\)
\(\Leftrightarrow4.x^2=4\)
\(\Leftrightarrow x^2=1\)
\(\Leftrightarrow x=1\)
y=ƒ (3)=4.3²−5=31
y=ƒ (−1/2 )=4.(−1/2 )2−5=−4
b,
y=ƒ (x)=4x2−5
⇔4.x2−5=−1
⇔4.x²=4
⇔x²=1
⇔x=1
chúc bn học tốt
Ta có : \(\frac{x-5}{5x-1}=\frac{4x-10}{20x+4}\)
=> \(\frac{x-5}{5x-1}=\frac{2x-5}{10x+2}\)
=> (x - 5)(10x + 2) = (2x - 5)(5x - 1)
=> 10x2 + 2x - 50x - 10 = 10x2 - 2x - 25x + 5
=> 10x2 - 48x - 10x2 + 27x = 5 + 10
=> -21x = 15
=> x = 15 : (-21) = -5/7
Thay x = -5/7 vào \(\frac{x-5}{5x-1}=\frac{y}{3}\)
=> \(\frac{-\frac{5}{7}-5}{5.\left(-\frac{5}{7}\right)-1}=\frac{y}{3}\)
=> \(\frac{-\frac{40}{7}}{-\frac{32}{7}}=\frac{y}{3}\)
=> \(\frac{5}{4}=\frac{y}{3}\)
=> 4y = 15
=> y = 15/4
Vậy ...
Ta có: \(\frac{5}{y}=\frac{3}{x}\) => \(\frac{x}{3}=\frac{y}{5}\) => \(\frac{x^2}{9}=\frac{y^2}{25}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{25}=\frac{y^2+x^2}{25+9}=\frac{125}{34}\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=\frac{125}{34}\\\frac{y^2}{25}=\frac{125}{34}\end{cases}}\) => \(\hept{\begin{cases}x^2=\frac{125}{34}.9=\frac{1125}{34}\\y^2=\frac{125}{34}.25=\frac{3125}{34}\end{cases}}\) => \(\hept{\begin{cases}x=\pm\frac{15\sqrt{170}}{34}\\y=\pm\frac{25\sqrt{170}}{34}\end{cases}}\)
Vì \(4x=5y\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)
\(\Rightarrow\left\{\begin{matrix}\frac{x}{5}=\frac{1}{9}\\\frac{y}{4}=\frac{1}{9}\end{matrix}\right.\)\(\Rightarrow\left\{\begin{matrix}x=\frac{5}{9}\\y=\frac{4}{9}\end{matrix}\right.\)
Từ 4x = 5y
=> \(\frac{x}{5}=\frac{y}{4}\) ( từ đẳng thức suy ra tỉ lệ thức )
\(=>\frac{x^2}{5^2}=\frac{y^2}{4^2}=>\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{1}{9}\)
Do đó:
\(\frac{x}{5}=\frac{1}{9}=>x=5:9=\frac{5}{9}\)
\(\frac{y}{4}=\frac{1}{9}=>y=4:9=\frac{4}{9}\)
Vậy x = \(\frac{5}{9}\) và y = \(\frac{4}{9}\)
Đề không đầy đủ. Bạn xem lại.