K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6

Sửa đề: Tìm x, y nguyên 

\(2xy+3y-2x=4\\\Rightarrow (2xy-2x)+(3y-3)=4-3\\\Rightarrow 2x(y-1)+3(y-1)=1\\\Rightarrow (2x+3)(y-1)=1\)

Vì x, y nguyên nên \(\)\(2x+3;y-1\) có giá trị nguyên

Mà \((2x+3)(y-1)=1\) 

Do đó ta có bảng sau:

 2x + 3   1    -1  
  y - 1  1  -1
     x  -1  -2
     y  2   0

Vì x, y tìm được đều thoả mãn x, y nguyên nên \((x;y)=(-1;2);(-2;0)\) 

$Toru$

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

$2x=3y\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{6}=\frac{y}{4}$

$5y=4z\Leftrightarrow \frac{y}{4}=\frac{z}{5}$

Vậy:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

$\Rightarrow (\frac{x}{6})^3=(\frac{y}{4})^3=(\frac{z}{5})^3=\frac{xyz}{6.4.5}=\frac{120}{120}=1$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}=1$

$\Rightarrow x=6; y=4; z=5$

16 tháng 7 2021

Em cảm ơn cô ạ!

25 tháng 8 2023

1)

xy + x - 4y = 12

x + y(x - 4) = 12

y(x - 4) = 12 - x

\(y=\dfrac{-x+12}{x-4}\)

Vì \(x,y\inℕ\) nên

\(\left(-x+12\right)⋮\left(x-4\right)\)

\(\left(-x+12\right)-\left(x-4\right)⋮\left(x-4\right)\)

\(16⋮\left(x-4\right)\)

\(\left(x-4\right)\inƯ\left(16\right)\)

\(\left(x-4\right)\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

\(x\in\left\{5;3;6;2;8;0;12;-4;20;-12\right\}\)

\(y\in\left\{\dfrac{-5+12}{5-4};\dfrac{-3+12}{3-4};\dfrac{-6+12}{6-4};\dfrac{-2+12}{2-4};\dfrac{-8+12}{8-4};\dfrac{-0+12}{0-4};\dfrac{-12+12}{12-4};\dfrac{4+12}{-4-4};\dfrac{-20+12}{20-4};\dfrac{12+12}{-12-4}\right\}\)

\(y\in\left\{7;-9;3;-5;1;-3;0;-2;-\dfrac{1}{2};-\dfrac{7}{5}\right\}\)

\(\left(x;y\right)\in\left\{\left(5;7\right);\left(3;-9\right);\left(6;3\right);\left(2;-5\right);\left(8;1\right);\left(0;-3\right);\left(12;0\right);\left(-4;-2\right);\left(20;-\dfrac{1}{2}\right);\left(-12;-\dfrac{7}{5}\right)\right\}\)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(5;7\right);\left(6;3\right);\left(8;1\right);\left(12;0\right)\right\}\)

2)

(2x + 3)(y - 2) = 15

\(\left(2x+3\right)\inƯ\left(15\right)\)

\(\left(2x+3\right)\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)

Ta lập bảng

2x + 3 1 -1 3 -3 5 -5 15 -15
y - 2 15 -15 5 -5 3 -3 1 -1
(x; y) (-1; 17) (-2; -13) (0; 7) (-3; -3) (1; 5) (-4; -1) (6; 3) (-9; 1)

Mà \(x,y\inℕ\) nên các giá trị cần tìm là \(\left(x;y\right)\in\left\{\left(0;7\right);\left(1;5\right);\left(6;3\right)\right\}\)

24 tháng 8 2023

các thầy cô ơi giúp em vs ạ mai em phải nộp r ạ!!!

 

11 tháng 7 2023

\(\dfrac{2x}{3y}=-\dfrac{1}{3}\\ \Rightarrow3y=2x:-\dfrac{1}{3}=\dfrac{2x.3}{-1}=-6x\\ \Rightarrow y=-\dfrac{6x}{3}=-2x\)

Thế \(y=-2x\) vào \(2x+3y^2=\dfrac{161}{4}\) được:

\(2x+3.\left(-2x\right)^2=\dfrac{161}{4}\\ \Leftrightarrow2x+12x^2-\dfrac{161}{4}=0\\ \Leftrightarrow48x^2+8x-161=0\\ \Leftrightarrow\left(48x^2+92x\right)+\left(-84x-161\right)=0\\ \Leftrightarrow4x\left(12x+23\right)-7\left(12x+23\right)=0\\ \Leftrightarrow\left(4x-7\right)\left(12x+23\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{4}\Rightarrow y=-\dfrac{2.7}{4}=-\dfrac{7}{2}\\x=-\dfrac{23}{12}\Rightarrow y=-2.-\dfrac{23}{12}=\dfrac{23}{6}\end{matrix}\right.\)

Vậy phương trình có nghiệm \(\left\{x;y\right\}=\left\{\dfrac{7}{4};-\dfrac{7}{2}\right\}\) hoặc \(\left\{x;y\right\}=\left\{-\dfrac{23}{12};\dfrac{23}{6}\right\}\)

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

3 tháng 7 2021

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)

Tương tự đến hết, kiểm tra lại hộ mk nhé ! 

\(\hept{\begin{cases}3x+2y=7y-3x\\x-y=10\end{cases}\Leftrightarrow\hept{\begin{cases}6x-5y=0\left(1\right)\\x=10+y\left(2\right)\end{cases}}}\)

Thay vào phương trình 1 ta có : 

\(6\left(10+y\right)-5y=0\)

\(\Leftrightarrow60+6y-5y=0\Leftrightarrow60+y=0\Leftrightarrow y=-60\)

Thay vào x ta đc : \(x=10+\left(-60\right)=-50\)

à mk xin lỗi d ko áp dụng đc 

\(6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)

Ta có : \(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có : 

\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)

Làm nốt nhé ! 

\(R=2x^3y\left[-3\left(-x\right)y^4\right]\)

\(=2x^3y\left[3xy^4\right]\)

\(=6x^4y^5\)

Vậy R  = 6x^4y^5

24 tháng 5 2020
thank you!! :)))
30 tháng 11 2017

Ta có: -2x=3y => \(\frac{x}{3}=\frac{y}{-2}=\frac{x-y}{3-\left(-2\right)}=\frac{15}{5}\)=3  ( Áp dụng tính chất của dãy tỉ số bằng nhau)

                      =>x=9, y=-6.

          Vậy....

19 tháng 4 2020

a) \(\frac{2x}{3y}=\frac{-1}{3}\) và 2x + 3y = 7

Ta có : \(\frac{2x}{3y}=\frac{-1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{\left(-1\right)+3}=\frac{7}{2}\)

=> \(\hept{\begin{cases}2x=\frac{7}{2}\cdot\left(-1\right)=-\frac{7}{2}\\3y=\frac{7}{2}\cdot3=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-\frac{7}{2}\right):2=-\frac{7}{4}\\y=\frac{21}{2}:3=\frac{7}{2}\end{cases}}\)

b) 21x = 19y => \(\frac{21x}{399}=\frac{19y}{399}\)=> \(\frac{x}{19}=\frac{y}{21}\)

Áp dụng t/c dãy tỉ số = nhau ta có :

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)

=> x = -38,y = -42

\(a,\frac{2x}{3y}=-\frac{1}{3}\)và \(2x+3y=7\)

Theo bài ra ta có 

\(\frac{2x}{3y}=-\frac{1}{3}\Rightarrow\frac{2x}{-1}=\frac{3y}{3}\)

Áp dụng dãy tỉ số bằng nhau ta có

\(\frac{2x}{-1}=\frac{3y}{3}=\frac{2x+3y}{-1+3}=\frac{7}{2}\)

\(\hept{\begin{cases}\frac{2x}{-1}=\frac{7}{2}\\\frac{3y}{3}=\frac{7}{2}\end{cases}\Rightarrow\hept{\begin{cases}2x=-\frac{7}{2}\\3y=\frac{21}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{7}{4}\\y=\frac{7}{2}\end{cases}}}\)

\(b,21x=19y\)và \(x-y=4\)

Theo bài ra ta có

\(21x=19y\Rightarrow\frac{x}{19}=\frac{y}{21}\)

Áp dụng dãy tỉ số bằng nhau ta có

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{4}{-2}=-2\)

\(\hept{\begin{cases}\frac{x}{19}=-2\\\frac{y}{21}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=-38\\y=-42\end{cases}}}\)