Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2020}+\frac{x-2}{2021}=\frac{x+1}{2018}+\frac{x+2}{2017}\)
\(\Leftrightarrow\frac{x-1}{2020}+1+\frac{x-2}{2021}-1=\frac{x+1}{2018}+1+\frac{x+2}{2017}+1\)
\(\Leftrightarrow\frac{x+2019}{2020}+\frac{x+2019}{2021}=\frac{x+2019}{2018}+\frac{x+2019}{2017}\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)
mà \(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\ne0\)
\(\Leftrightarrow x+2019=0\)
\(\Leftrightarrow x=-2019\)
B=5+2(x-2019)2020
Vì (x-2019)2020 ≥0
=>5+(x-2019)2020 ≥5
Để B đạt Min
=>x-2019=0
=>x=2019
Vậy MinB=5 <=>x=2019
a ) 4 . ( x2 + 1 ) = 0
x2 + 1 = 0 : 4
x2 + 1 = 0
x2 = 0 - 1
x2 = - 1
x2 = - 12 => x = - 1
Vậy x = - 1
Ta có: \(\dfrac{x+1}{2018}+\dfrac{x+1}{2019}+\dfrac{x+1}{2020}+\dfrac{x+1}{2021}=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
1)Đặt A = \(\frac{1}{7.8}+\frac{1}{14.10}+\frac{1}{20.13}+...+\frac{1}{38.22}\)
\(\frac{1}{2}A=\frac{1}{8.14}+\frac{1}{14.20}+...+\frac{1}{38.44}\)
\(\frac{1}{2}A=6\left(\frac{1}{8}-\frac{1}{14}+\frac{1}{14}-\frac{1}{20}+...+\frac{1}{38}-\frac{1}{44}\right)\)
\(\frac{1}{2}A=6\left(\frac{1}{8}-\frac{1}{44}\right)\)
\(\frac{1}{2}A=6.\frac{9}{88}\)
\(\frac{1}{2}A=\frac{27}{44}\)
\(A=\frac{1}{44}:\frac{1}{2}=\frac{1}{22}\)
2) a) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{1}{3}-\frac{1}{9}-\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{2}{9}-\frac{1}{x\left(x+2\right)}=\frac{2018}{2020}\)
\(\frac{1}{x\left(x+2\right)}=\frac{2}{9}-\frac{2018}{2020}\)
Hình như đề sai . Hoặc là mình sai >:
\(x^{2020}=x\Leftrightarrow x^{2020}-x=0\Leftrightarrow x\left(x^{2019}-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^{2019}=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(1+2+2^2+2^3+....+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+....+\left(2^{2016}+2^{2017}+2^{2018}\right)+2^{2019}+2^{2020}\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+.....+2^{2016}\left(1+2+2^2\right)+2^{2019}+2^{2020}\)
\(A=7+2^3.7+2^6.7+2^9.7+....+2^{2016}.7+2^{2019}+2^{2020}\)
\(\text{Ta có:}2^{2019}+2^{2020}=8^{673}+8^{673}.2\equiv1+1.2\left(\text{mod 7}\right)\equiv3\left(\text{mod 7}\right)\Rightarrow A\text{ chia 7 dư 3}\)