K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Ta có:
\(x^3+x=0\)
\(\Rightarrow x\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=-1\left(vn\right)\end{cases}}\Rightarrow x=0\)

10 tháng 8 2016

bn vũ quang vinh lam đúng rùi sao k tisk cho bn ấy, hay là không hiu j , hay là ích kỷ ,tui tisk cho bn z

18 tháng 6 2016
a)=(a+b+c)(a^2 +b^2 +c^2 -ab-bc-ca) b)=(x^2)^3 -(y^2)^3 Áp dụng hằng đăng thức thì ta làm đươc thôi dễ mà
27 tháng 10 2020

1) x3 + y3 + z3 - 3xyz

= ( x + y )3 - 3xy( x + y ) + z3 - 3xyz

= [ ( x + y )3 + z3 ) - [ 3xy( x + y ) + 3xyz ]

= ( x + y + z )[ ( x + y )2 - ( x + y )z + z2 ] - 3xy( x + y + z )

= ( x + y + z )( x2 + y2 + z2 + 2xy - xz - yz - 3xy )

= ( x + y + z )( x2 + y2 + z2 - xy - yz - xz )

2) Tạm thời đang bí chưa làm được :(

3) ( x2 - 2x )2( x2 - 2x - 1 ) - 6 ( đề có vấn đề -- )

4) x4 - 7x3 + 14x2 - 7x + 1

= x4 - 3x2 - 4x2 + x2 + 12x2 + x2 - 4x - 3x + 1

= ( x4 - 3x2 + x2 ) - ( 4x3 - 12x2 + 4x ) + ( x2 - 3x + 1 )

= x2( x2 - 3x + 1 ) - 4x( x2 - 3x + 1 ) + ( x2 - 3x + 1 )

= ( x2 - 3x + 1 )( x2 - 4x + 1 )

10 tháng 6 2018

a, x^4 - 5x^2 + 4

= x^4 - 4x^2- x+ 4

= x^2  . (x^2 - 4) - (x^2 - 4)

= (x^2 - 4) . (x^2 - 1)

= (x - 2) . (x + 2) . (x - 1) . (x + 1)

3 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

18 tháng 12 2016

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

 

 

18 tháng 12 2016

thui mik hieu roi cam on mn

22 tháng 7 2016

a) Đề bài phải là : \(\left(x+y\right)^2-\left(x-y\right)^2\)thì mới phân tích được.

Nếu đề bài như trên ta có:

 \(\left(x+y\right)^2-\left(x-y\right)^2=\)\(\left(x+y-x+y\right)\left(x+y+x-y\right)=2x\cdot2y=4xy\)

b) Ta có: \(\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)\)

            = \(2x\cdot\left(4x+2\right)=2x\cdot2\cdot\left(2x+1\right)=4x\cdot\left(2x+1\right)\)

c) Ta có : \(x^3+y^3+z^3-3xyz\)

\(\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xy\)

=\(\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)-3xy\left(x+y+z\right)\)

=\(\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)

=\(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

 

13 tháng 6 2015

a) \([(x-y)3 + (y-z)3]+ (z-x)3\)=\(\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]-\left(x-z\right)^3\)

\(=\left(x-z\right)\left[\left(\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(x-z\right)^2\right)\right]\)

\(=\left(x-z\right)\left[\left(x-y\right)\left(x-y-y+z\right)+\left(y-z-x+z\right)\left(y-z+x-z\right)\right]=\left(x-z\right)\left[\left(x-2y+z\right)\left(x+z\right)-\left(x-y\right)\left(x+y-2z\right)\right]\)

\(=\left(x-z\right)\left(x-y\right)\left(x-2y+z-x-y+2z\right)=\left(x-z\right)\left(x-y\right)\left(z-y\right)3\)

b) \(=y^2\left(x^2y-x^3+z^3-z^2y\right)-z^2x^2\left(z-x\right)=y^2\left[-y\left(z^2-x^2\right)-\left(z^3-x^3\right)\right]-z^2x^2\left(z-x\right)\)

\(=y^2\left(z-x\right)\left(-yz-xy-z^2-zx-x^2\right)-z^2x^2\left(z-x\right)=\left(z-x\right)\left(-y^3z-xy^2-z^2y^2-xyz-x^2y^2-z^2x^2\right)\)

đến đây coi như là thành nhân tử rồi nha. em muốn gọn thì ráng ngồi nghĩ rồi tách nha. chỉ cần nhóm mấy cái có ngoặc giống nhau là đc. k khó đâu. chịu khó nghĩ để rèn luyện nha

c) \(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-x^4=\left(x^4+1-x^2\right)\left(x^4+1+x^2\right)\)

\(\left(9a^3-6a^2\right)+\left(6a^2-4a\right)+\left(-9a+6\right)=3a^2\left(3a-2\right)+2a\left(3a-2\right)-3\left(3a-2\right)=\left(3a-2\right)\left(3a^2+2a-3\right)\)

d) em sửa đề đi. đề sai rồi. đồng nhất hệ số phải có dấu bằng nha.

có gì liên hệ chị. đúng nha ;)

22 tháng 7 2016

hằng đẳng thức a2-b2=(a-b)(a+b) í bạn

4 tháng 8 2016

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3x^2y-3xy^2+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2-3xyz\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xz-yz-xy\right)\)

9 tháng 10 2016

a) \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)

\(=\left[\left(x-2\right)\left(x-5\right)\right]\left[\left(x-3\right)\left(x-4\right)\right]+1\)

\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\) 

Đặt: \(x^2-7x+11=t\)

\(\Rightarrow\hept{\begin{cases}x^2-7x+10=t-1\\x^2-7x+12=t+1\end{cases}}\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)

\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)

\(=\left(t-1\right)\left(t+1\right)+1\)

\(=t^2-1+1\)

\(=t^2\)

Vậy: \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)

\(=\left(x^2-7x+11\right)^2\)