Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có : \(P=x^7-x^2+x^5-x^4-5x+7x-2\)
\(=x^7-x^2+x^5-x^4+2x-2\)
\(Q=x^4-5x^2+x-x^5-x^7-x^2-1\)
\(=x^4-6x^2+x-x^5-x^7-1\)
b, Ta có : \(P+Q=\left(x^7-x^2+x^5-x^4+2x-2\right)+\left(x^4-6x^2+x-x^5-x^7-1\right)\)
\(=x^7-x^2+x^5-x^4+2x-2+x^4-6x^2+x-x^5-x^7-1\)
\(=-7x^2+3x-3\) (Có j sai ib cj , e nhé!)
c, \(Q+A=P\Leftrightarrow A=P-Q\) thay số vào tính nha.
a, \(27< 3^x< 3\cdot81\)
=> \(3^3< 3^x< 3\cdot3^4\)
=> \(3^3< 3^x< 3^5\)
=> x = 4
b, \(4^{15}\cdot9^{15}< 2^x\cdot3^x< 18^{16}\cdot216\)
=> \(\left[2^2\right]^{15}\cdot\left[3^2\right]^{15}< 2^x\cdot3^x< \left[2\cdot3^2\right]^{16}\cdot6^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{16}\cdot3^{32}\cdot2^3\cdot3^3\)
=> \(2^{30}\cdot3^{30}< 2^x\cdot3^x< 2^{19}\cdot3^{35}\)
Đến đây tìm được x
\(c,2^{x+1}\cdot3^y=2^{2x}\cdot3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\Leftrightarrow x=1\)
\(d,6^x:2^{2000}=3^y\)
=> \(\frac{6^x}{3^y}=2^{2000}\)
=> \(\frac{3^{2x}}{3^y}=2^{2000}\)
=> \(3^{2x-y}=2^{2000}\)
Đến đây tìm thử x,y
a, (x-3)2 - 2(x-3) + 1 < 1 <=> (x-3-1)2 <1 <=> (x-4)2 <1 <=> -1< x-4<1 <=> 3<x<5 mặt khác x thuộc z => x= 4
b,\(\frac{x+3}{2x-1}\)< 1 đk x khác 1/2
<=> \(\frac{x+3}{2x-1}\)- 1 <0 <=> \(\frac{x+3-\left(2x-1\right)}{2x-1}\)< 0 <=> \(\frac{2-x}{2x-1}\)< 0 => 2 TH xảy ra\(\orbr{\begin{cases}\hept{\begin{cases}2x-1< 0\\2-x>0\end{cases}}\\\hept{\begin{cases}2x-1>0\\2-x< 0\end{cases}}\end{cases}}\)
TH1 \(\hept{\begin{cases}2x-1< 0\\2-x>0\end{cases}}\)<=> 1/2 <x<2 mà x thuộc z => x= 1
TH2 \(\hept{\begin{cases}2x-1>0\\2-x< 0\end{cases}}\)<=>\(\hept{\begin{cases}x>\frac{1}{2}\\x>2\end{cases}}\)<=> x>2 và x thuộc z
c, x(x+3) >x2(x+3) <=> x(x+3)- x2(x+3) > 0 <=> x(x+3)(1-x)<0 mà x thuộc z
x | -3 | 0 | 1 | ||||
x+3 | - | 0 | + | + | |||
1-x | + | + | 0 | - | |||
x(x+3)(1-x) | + (loại) | 0 (loại) | - (TM) | 0 (loại) | 0 (loại) | - (TM) |
=> \(\orbr{\begin{cases}-3< x< 0\\x>1\end{cases}}\)vì x thuộc z
TH1 -3<x<0 => x=-1 hoặc x= -2 vì x thuộc z
TH2 x>1 và x thuộc z
d, x< x2 <=> x - x2 < 0 <=> x(1-x) < 0 <=> 2 TH xảy ra
TH1 \(\hept{\begin{cases}x< 0\\x-1>0\end{cases}}\)<=> không xảy ra
TH2 \(\hept{\begin{cases}x>0\\x-1< 0\end{cases}}\)<=> 0 <x<1
\(x^2< x\)
\(\Leftrightarrow x^2-x< 0\)
=>x(x-1)<0
=>0<x<1