K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2015

mong mấy bạn giúp mình mai mình nộp rôì ko đùa đâu

1 tháng 11 2016

ai lam guip toi cau nay voi mai toi nop bai roi

so sanh 2 phan so sau bang cach nahnh nhat: 2007/2008 voi 2008/2009

20 tháng 2 2017

Ta có: /x-2009/2009\(\ge\)0; (y-2010)2010=[(y-2010)1005]2 \(\ge\)0 và 2011/z-2011/\(\ge\)0

Tổng 3 số dương 0 khi và chỉ khi 3 số đó đều=0, khi đó dấu bằng xảy ra.
=> \(\hept{\begin{cases}Ix-2009I^{2009}=0\\\left(y-2010\right)^{2010}=0\\2011Iz-2011I=0\end{cases}}\)

=> x=2009; y=2010; z=2011

20 tháng 2 2017

x=2009

y=2010

z=2011

3 tháng 9 2018

\(\frac{x+10}{2008}+\frac{x+9}{2009}=\frac{x+8}{2010}+\frac{x+7}{2011}\)

\(\left(\frac{x+10}{2008}+1\right)+\left(\frac{x+9}{2009}+1\right)=\left(\frac{x+8}{2010}+1\right)+\left(\frac{x+7}{2011}+1\right)\)

\(\frac{x+2018}{2008}+\frac{x+2018}{2009}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)

\(\frac{x+2018}{2008}+\frac{x+2018}{2009}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)

\(x+2018\cdot\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)

mà \(\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)\ne0\)

\(\Rightarrow x+2018=0\)

\(\Rightarrow x=-2018\)

Vậy,.............

3 tháng 9 2018

Ta có: \(\frac{x+10}{2008}+\frac{x+9}{2009}=\frac{x+8}{2010}+\frac{x+7}{2011}\)

\(\Rightarrow\frac{x+10}{2008}+1+\frac{x+9}{2009}+1=\frac{x+8}{2010}+1+\frac{x+7}{2011}+1\)

\(\Rightarrow\frac{x+2018}{2008}+\frac{x+2018}{2009}=\frac{x+2018}{2010}+\frac{x+2018}{2011}\)

\(\Rightarrow\frac{x+2018}{2008}+\frac{x+2018}{2009}-\frac{x+2018}{2010}-\frac{x+2018}{2011}=0\)

\(\Rightarrow x+2018\cdot\left(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\right)=0\)

Do \(\frac{1}{2008}+\frac{1}{2009}-\frac{1}{2010}-\frac{1}{2011}\ne0\)

\(\Rightarrow x+2018=0\)

\(\Rightarrow x=-2018\)

Vậy \(x=-2018\)

16 tháng 9 2019

giúp mình với khocroi

14 tháng 3 2017

\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(=>\dfrac{x+4}{2010}+1\))+(\(\dfrac{x+3}{2011}+1\))=\(\left(\dfrac{x+2}{2012}+1\right)\)+\(\left(\dfrac{x+1}{2013}+1\right)\)

=>\(\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)

=>x+2014(\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\))=0

ta thấy \(\dfrac{1}{2010}>\dfrac{1}{2011}>\dfrac{1}{2012}>\dfrac{1}{2013}\)

=>\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}>0\)

để A=0

\(\Leftrightarrow x+2014=0\)

\(\Leftrightarrow\)x=-2014

14 tháng 3 2017

a)\(\dfrac{x+4}{2010}+\dfrac{x+3}{2011}=\dfrac{x+2}{2012}+\dfrac{x+1}{2013}\)

\(\Rightarrow\left(\dfrac{x+4}{2010}+1\right)+\left(\dfrac{x+3}{2011}+1\right)=\left(\dfrac{x+2}{2012}+1\right)+\left(\dfrac{x+1}{2013}+1\right)\)\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}=\dfrac{x+2014}{2012}+\dfrac{x+2014}{2013}\)\(\Rightarrow\dfrac{x+2014}{2010}+\dfrac{x+2014}{2011}-\dfrac{x+2014}{2012}-\dfrac{x+2014}{2013}=0\)

\(\Rightarrow\left(x+2014\right)\left(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\right)=0\)\(\dfrac{1}{2010}+\dfrac{1}{2011}-\dfrac{1}{2012}-\dfrac{1}{2013}\ne0\)

\(\Rightarrow x+2014=0\)

\(\Rightarrow x=-2014\)

20 tháng 9 2019

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+1010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)=\left(x+2010\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\right)\)

\(\Rightarrow x+2010=0\) vì \(0< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}< \frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\)

\(\Rightarrow x=-2010\)

20 tháng 9 2019

                                                            Bài giải

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-(\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998})=0\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)\ne0\) nên \(x+2010=0\)

                                                                                                                          \(x=0-2010=-2010\)

8 tháng 7 2017

\(\dfrac{x+1}{2009}+\dfrac{x+2}{2008}+\dfrac{x+3}{2007}=\dfrac{x+10}{2000}+\dfrac{x+11}{1999}+\dfrac{x+12}{1998}\)

\(\Rightarrow\left(\dfrac{x+1}{2009}+1\right)+\left(\dfrac{x+2}{2008}+1\right)+\left(\dfrac{x+3}{2007}+1\right)=\left(\dfrac{x+10}{2000}+1\right)+\left(\dfrac{x+11}{1999}+1\right)+\left(\dfrac{x+12}{1998}+1\right)\)

\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}=\dfrac{x+2010}{2000}+\dfrac{x+2010}{1999}+\dfrac{x+2010}{1998}\)\(\Rightarrow\dfrac{x+2010}{2009}+\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}-\dfrac{x+2010}{2000}-\dfrac{x+2010}{1999}-\dfrac{x+2010}{1998}=0\)\(\Rightarrow\left(x+2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2007}-\dfrac{1}{2000}-\dfrac{1}{1999}-\dfrac{1}{1998}\right)=0\)\(\Rightarrow x+2010=0\Rightarrow x=-2010\)