K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

a) (x-1)+(x-2)+(x-3)+...+(-100)=101

(x+x+x+...+x)-(1+2+3+...+100)=101

=> 100x-5050=101

100x=101+5050

100x=5151

x=5151:100

x=5151/100

31 tháng 7 2018

1/

\(A\)dương \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-\frac{1}{2}\right)>0\\x-\frac{4}{5}>0\end{cases}}\)

                   \(\Leftrightarrow\hept{\begin{cases}x>0+\frac{1}{2}\\x>0+\frac{4}{5}\end{cases}}\)

                     \(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{2}\\x>\frac{4}{5}\end{cases}}\Leftrightarrow x>0,8\)

2/ Làm tương tự nhưng có  2 trường hợp nên bạn làm từng trường hợp nhé ..! 

8 tháng 3 2019

\(\left|x+1\right|+\left|x+2\right|+...+\left|x+100\right|=605x\)(1)

Vì \(VT>0\forall x\)

\(\Rightarrow VP>0\Leftrightarrow605x>0\Leftrightarrow x>0\)

Khi đó \(\left(1\right)\Leftrightarrow x+1+x+2+...+x+100=605x\)

\(\Leftrightarrow100x+5050=605x\)

\(\Leftrightarrow505x=5050\)

\(\Leftrightarrow x=10\)( thỏa mãn )

Vậy....

\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)

\(\left(x\cdot100\right)+\left(1+2+...+100\right)=5750\)

\(\left(x\cdot100\right)+\left(100+1\right)\cdot\frac{100}{2}=5750\)

\(\left(x\cdot100\right)+101\cdot50=5750\)

\(\left(x\cdot100\right)+5050=5750\)

\(x\cdot100=5750-5050\)

\(x\cdot100=700\)

\(x=700\div100\)

\(x=7\)

7 tháng 5 2018

Ta có: ( x+1)+(x+2)+(x+3)+.....+(x+99)+(x+100)=5750

<=>(x+x+x+....+x+x)+(1+2+3+..+99+100)=5750

<=> 100x+5050=5750

=>100x=5750-5050

=>100x=700

=>x=700:100

=>x=7

Vậy x=7

 hoặc mở câu hỏi tương tự tham khảo.

1) Ta có: \(2\cdot\left|\frac{1}{2}x-\frac{3}{8}\right|-\frac{3}{2}=\frac{1}{4}\)

\(2\cdot\left|\frac{1}{2}x-\frac{3}{8}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)

\(\left|\frac{1}{2}x-\frac{3}{8}\right|=\frac{7}{4}:2=\frac{7}{4}\cdot\frac{1}{2}=\frac{7}{8}\)

\(\left[{}\begin{matrix}\frac{1}{2}x-\frac{3}{8}=\frac{7}{8}\\\frac{1}{2}x-\frac{3}{8}=\frac{-7}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x=\frac{10}{8}\\\frac{1}{2}x=\frac{-4}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{10}{8}:\frac{1}{2}=\frac{10}{8}\cdot2=\frac{20}{8}=\frac{5}{2}\\x=\frac{-4}{8}:\frac{1}{2}=-\frac{4}{8}\cdot2=-\frac{8}{8}=-1\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{5}{2};-1\right\}\)

2) Ta có: \(-5\cdot\left(x+\frac{1}{5}\right)-\frac{1}{2}\cdot\left(x-\frac{2}{3}\right)=\frac{3}{2}x-\frac{5}{6}\)

\(-5x-1-\frac{1}{2}x+\frac{1}{3}-\frac{3}{2}x+\frac{5}{6}=0\)

\(\Leftrightarrow-7x+\frac{1}{6}=0\)

\(\Leftrightarrow-7x=-\frac{1}{6}\)

hay \(x=\frac{1}{42}\)

Vậy: \(x=\frac{1}{42}\)

3) Ta có: \(3\left(x-\frac{1}{2}\right)-5\left(x+\frac{3}{5}\right)=-x+\frac{1}{5}\)

\(\Leftrightarrow3x-\frac{3}{2}-5x-3+x-\frac{1}{5}=0\)

\(\Leftrightarrow-x-\frac{47}{10}=0\)

\(-x=\frac{47}{10}\)

hay \(x=\frac{-47}{10}\)

Vậy: \(x=\frac{-47}{10}\)

4) Ta có: \(\frac{3}{4}-2\left|2x-0,125\right|=2\)

\(\Leftrightarrow2\left|2x-\frac{1}{8}\right|=\frac{3}{4}-2=-\frac{5}{4}\)

\(\left|2x-\frac{1}{8}\right|=-\frac{5}{8}\)(vô lý)

Vậy: x∈∅

5) Ta có: \(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)

\(2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)

\(\Leftrightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{8}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=\frac{-7}{8}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x=\frac{7}{8}+\frac{1}{3}=\frac{29}{24}\\\frac{1}{2}x=-\frac{7}{8}+\frac{1}{3}=-\frac{13}{24}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{29}{24}:\frac{1}{2}=\frac{29}{24}\cdot2=\frac{29}{12}\\x=-\frac{13}{24}:\frac{1}{2}=-\frac{13}{24}\cdot2=-\frac{13}{12}\end{matrix}\right.\)

Vậy: \(x\in\left\{\frac{29}{12};\frac{-13}{12}\right\}\)

30 tháng 5 2020

Bài mk sai r nhé!!

4 tháng 8 2019

ĐKXĐ : 101x \(\ge\)0 nên x \(\ge\)0

khi đó : \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)

\(\Leftrightarrow\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)

\(\Leftrightarrow100x+\frac{5050}{101}=101x\Leftrightarrow x=50\)

4 tháng 8 2019

*ĐK : 101x\(\ge\) 0 => x\(\ge\)0

=> \(x+\frac{1}{101}\ge\frac{1}{101}>0\Rightarrow\left|x+\frac{1}{101}\right|=x+\frac{1}{101}\)

     \(x+\frac{2}{101}\ge\frac{2}{101}>0\Rightarrow\left|x+\frac{2}{101}\right|=x+\frac{2}{101}\)

...

\(x+\frac{100}{101}\ge\frac{100}{101}>0\Rightarrow\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)

Ta có :

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

<=> \(100x+\left(\frac{1+2+...+100}{101}\right)=101x\)

<=> \(100x+\frac{5050}{101}=101x\)

<=> \(100x-101x=\frac{-5050}{101}\)

<=> -x = -50

=> x = 50 ( t/m x >/ 0)

2 tháng 4 2023

1+1=3 :)))