Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\left(x-5\right)\left(x-4\right)-\left(x+1\right)\left(x-2\right)=7\)
\(\Rightarrow x^2-9x+20-x^2+x+2=7\)
\(\Rightarrow-8x+22=7\)
\(\Rightarrow-8x=-15\)
\(\Rightarrow x=\frac{15}{8}\)
c, \(\left(3x-4\right)\left(x-2\right)=3x\left(x-9\right)-3\)
\(\Rightarrow3x^2-10x+8=3x^2-27x-3\)
\(\Rightarrow3x^2-10x-3x^2+27x=\left(-3\right)+\left(-8\right)\)
\(\Rightarrow17x=-11\)
\(\Rightarrow x=-\frac{11}{17}\)
d, \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(5-x^2\right)=6x\)
\(\Rightarrow x^3+3x^2+9x-3x^2-9x-27+5x-x^3=6x\)
\(\Rightarrow6x=-27\)
\(\Rightarrow x=-\frac{27}{6}\)
\(\Rightarrow x=-\frac{9}{2}\)
e, \(\left(3x-5\right)\left(x+1\right)-\left(3x-1\right)\left(x+1\right)=x-4\)
\(\Rightarrow3x^2-2x-5-3x^2-2x+1=x-4\)
\(\Rightarrow-4=x-4\)
\(\Rightarrow x=0\)
b) (x - 5)(x - 4) - (x + 1)(x - 2) = 7
<=> x2 - 9x + 20 - x2 + x + 2 - 7 = 0
<=> 8x - 15 = 0 <=> x = 15/8
c) (3x - 4)(x - 2) = 3x(x - 9) - 3
<=> 3x2 - 10x + 8 = 3x2 - 27x - 3
<=> 17x = -11 <=> x = -11/17
d) (x - 3)(x2 + 3x + 9) + x(5 - x2) = 6x
<=> x3 - 27 - x3 + 5x - 6x = 0
<=> x = -27
e) (3x - 5)(x + 1) - (3x - 1)(x + 1) = x - 4
<=> (x + 1)(3x - 5 - 3x + 1) - x + 4 = 0
<=> -4x - 4 - x + 4 = 0 <=> x = 0
a,6x-3-5x+15+18x-24=24
19x-12=24
19x=36
x=36/19
c,10x-6x2+6x2-10x+21=3
0x=-18
không có x
d,3x2+3x-2x2-4x=-1-x
x2-x=-1-x
x2-x+x=-1
x2=-1
không có x thỏa mãn
\(\left(x-1\right)^3-\left(x-2\right)^3=\left(3x-1\right)\left(3x+1\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+6x^2-12x+4=9x^2-1\)
\(\Leftrightarrow3x^2-9x+3=9x^2-1\)
\(\Leftrightarrow-6x^2-9x+4=0\)
........
\(\left(x-1\right)^3-\left(x-2\right)^3=\left(3x-1\right)\left(3x+1\right)\)
<=>\(\left[\left(x-1\right)-\left(x-2\right)\right]\left[\left(x-1\right)^2+\left(x-1\right)\left(x-2\right)+\left(x-2\right)^2\right]=9x^2-1\)
<=>\(\left(x-1-x+2\right)\left(x^2-2x+1+x^2-3x+2+x^2-4x+4\right)=9x^2-1\)
<=>\(3x^2-9x+7=9x^2-1\)
<=>\(6x^2+9x-8=0\Leftrightarrow6\left(x+\frac{3}{2}\right)^2-\frac{91}{8}=0\Leftrightarrow6\left(x+\frac{3}{2}\right)^2=\frac{91}{8}\Leftrightarrow\left(x+\frac{3}{2}\right)^2=\frac{91}{48}\)
<=>\(\orbr{\begin{cases}x+\frac{3}{2}=-\sqrt{\frac{91}{48}}\\x+\frac{3}{2}=\sqrt{\frac{91}{48}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{18+\sqrt{273}}{12}\\x=\frac{-18+\sqrt{273}}{12}\end{cases}}\)