Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
Toán lớp 6Tìm x
Trả lời Câu hỏi tương tự
Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !
Bài làm
a) x² - 3 = 22
=> x² = 25
=> x = + 5
Vậy x = + 5
b) 2x³ + 5 = -11
2x³ = -16
x³ = -8
x = -2
Vậy x = -2
c) ( x + 2 )² = 81
=> x + 2 = 9
=> x = 7
Vậy x = 7
d) ( 2x + 1 )² = 25
=> 2x + 1 = 5
=> 2x = 4
=> x = 2
Vậy x = 2
e) 5x + 2 = 625
5x = 623 ( vô lí )
g) ( 2x - 3 )² = 36.
=> 2x - 3 = 6
=> 2x = 9
=> x = 4,5
Vậy x = 4,5
h) ( 2x - 1 )³ = -8
=> 2x - 1 = -2
=> 2x = -1
=> x = -1/2
Vậy x = -1/2
i) ( x - 1 )x + 2 = ( x - 1 )x + 6
=> [ (x - 1 )x - ( x - 1 )x ] = 6 - 2
=> 0 = 4 ( vô lí )
Vậy x thuộc rỗng.
k) x² + x = 0
=> x( x + 1 ) = 0
=> x = 0 hoặc x + 1 = 0
=> x = 0 hoặc x = -1
Vậy x = 0 hoặc x = -1
a) \(\left(x+2\right)^2-\left(3x-7\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=3x-7\\x+2=-3x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3x=-2-7\\x+3x=-2+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=-9\\4x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Mấy câu kia tương tự.
a) \(\left(x+2\right)^2-\left(3x-7\right)^2=0\)
\(\Leftrightarrow\left(x+2-3x+7\right)\left(x+2+3x-7\right)=0\)
\(\Leftrightarrow\left(-2x+9\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x+9=0\\4x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=-9\\4x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9}{-2}=\dfrac{9}{2}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{9}{2}\) hoặc \(x=\dfrac{5}{4}\)
b) lộn đề à
c) \(25\left(x-3\right)^2-49\left(2x+1\right)^2=0\)
\(\Leftrightarrow5^2\left(x-3\right)^2-7^2\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[5\left(x-3\right)\right]^2-\left[7\left(2x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(5x-15\right)^2-\left(14x+7\right)^2=0\)
\(\Leftrightarrow\left(5x-15-14x-7\right)\left(5x-15+14x+7\right)=0\)
\(\Leftrightarrow\left(-9x-22\right)\left(19x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x-22=0\\19x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x=22\\19x=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{22}{-9}=\dfrac{-22}{9}\\x=\dfrac{8}{19}\end{matrix}\right.\)
Vậy \(x=\dfrac{-22}{9}\) hoặc \(x=\dfrac{8}{19}\)
d) \(9\left(3x-2\right)^2=121\left(1-4x\right)^2\)
\(\Leftrightarrow9\left(3x-2\right)^2-121\left(1-4x\right)^2=0\)
\(\Leftrightarrow3^2\left(3x-2\right)^2-11^2\left(1-4x\right)^2=0\)
\(\Leftrightarrow\left[3\left(3x-2\right)\right]^2-\left[11\left(1-4x\right)\right]^2=0\)
\(\Leftrightarrow\left(9x-6\right)^2-\left(11-44x\right)^2=0\)
\(\Leftrightarrow\left(9x-6-11+44x\right)\left(9x-6+11-44x\right)=0\)
\(\Leftrightarrow\left(53x-17\right)\left(-35x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}53x-17=0\\-35x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}53x=17\\-35x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{53}\\x=\dfrac{-5}{-35}=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(x=\dfrac{17}{53}\) hoặc \(x=\dfrac{1}{7}\)
a.-2 .(7 + x) < 0
ta có:- . + = - (khác 0)
- < 0
=>7 + x = -1;-2;-3;-4;...
x = -6;-5;-4;...
b.(x - 1) . (x + 2) < 0
ta có: - . + = - hoặc + . - = -
=>(x - 1) . ( x + 2) = -
=>x = -1
c.(x^2 - 9).(2x + 10) = 0
=> (x^2 - 9) = 0 hoặc (2x + 10) = 0
x^2 - 9 =0
x^2 =0 + 9
x^2 = 9
x = 3 hoặc -3
2x + 10=0
2x = 0 - 10
2x = -10
x = -10 : 2
x = -5
vậy: x thuộc {3;-3;5}
d.(x - 2)^2 - 25=0
(x - 2 )^2 = 0 + 25
(x - 2)^2 = 25
x - 2 =5
x = 5 + 2
x =7
\(\left(x-\frac{1}{2}\right)^2=0\)
<=> \(x-\frac{1}{2}=0\)
<=> \(x=\frac{1}{2}\)
\(\left(x-2\right)^2=1\)
<=> \(\hept{\begin{cases}x-2=1\\x-2=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=1\end{cases}}\)
\(\left(2x+3\right)^2=\frac{9}{121}\)
<=-> \(\hept{\begin{cases}2x+3=\frac{3}{11}\\2x+3=\frac{-3}{11}\end{cases}}\)
<=> \(\hept{\begin{cases}2x=\frac{-30}{11}\\2x=\frac{-36}{11}\end{cases}}\)
\(2x^{10}=25x^8\)
<=> \(2x^{10}-25x^8=0\)
<=> \(x^8.\left(2x^2-25\right)=0\)
<=> \(\hept{\begin{cases}x^8=0\\2x^2-25=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x^2=\frac{25}{2}\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x=\sqrt{\frac{25}{2}}\\x=-\sqrt{\frac{25}{2}}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{-15}{11}\\x=\frac{-18}{11}\end{cases}}\)