Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A.
Đặt t = x + 1 ⇒ 2 t d t = d x
∫ x x + 1 d x = ∫ 2 t 4 - 2 t 2 d t = 2 5 t 5 - 2 3 t 3 + C = 2 5 x + 1 5 - 2 3 x + 1 3 + C
Vì F(0) = 2 nên C = 34/15. Thay x = 3 ta được F(3) = 146/15.
Ta có \(y'=-3x^2+6mx\)
Để hàm số đã cho nghịch biến trên \(ℝ\) thì
\(f\left(x\right)=-3x^2+6mx\le0,\forall x\inℝ\)
Thế thì \(\Delta'=9m^2-\left(-3\right).0\le0\) \(\Leftrightarrow m=0\)
Vậy để hàm số đã cho nghịch biến trên \(ℝ\) thì \(m=0\)
\(x.0,\left(2\right)+0,\left(3\right)=0,\left(77\right)\)
\(\Rightarrow x.\frac{2}{9}+\frac{3}{9}=\frac{7}{9}\)
\(\Rightarrow\frac{2x}{9}=\frac{7}{9}-\frac{3}{9}\)
\(\Rightarrow\frac{2x}{9}=\frac{4}{9}\)
\(\Rightarrow x=2\)
Vậy x = 2