\(\varepsilon\)N ,biết :   \(\frac{1}{3}\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left[x+1\right]}=\frac{2007}{2009}\)

\(2\left[\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left[x+1\right]}\right]=\frac{2007}{2009}\)

\(2\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)

\(2\left[\frac{1}{2}-\frac{1}{x+1}\right]=\frac{2007}{2009}\)

\(1-\frac{2}{x+1}=\frac{2007}{2009}\)

\(\frac{2}{x+1}=1-\frac{2007}{2009}\)

\(\frac{2}{x+1}=\frac{2}{2009}\)

\(\Rightarrow x+1=2009\Leftrightarrow x=2008\)

20 tháng 4 2019

Đặt \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

Vậy \(A< \frac{1}{2}\left(đpcm\right)\)

20 tháng 4 2019

Ta có: \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)

21 tháng 2 2017

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

Vậy x = 305

4 tháng 7 2018

a, \(\dfrac{1}{5.8}\)+\(\dfrac{1}{8.11}\)+\(\dfrac{1}{11.14}\)+...+\(\dfrac{1}{x\left(x+3\right)}\)=\(\dfrac{101}{1540}\)

\(\dfrac{1}{3}\)(\(\dfrac{3}{5.8}\)+\(\dfrac{3}{8.11}\)+\(\dfrac{3}{11.14}\)+...+\(\dfrac{3}{x\left(x+3\right)}\))=\(\dfrac{101}{1540}\)

\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{11}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)

\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)

\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{101}{1540}\) : \(\dfrac{1}{3}\)

\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}\)=\(\dfrac{1}{5}\)-\(\dfrac{303}{1540}\)

\(\dfrac{1}{x+3}\)=\(\dfrac{1}{308}\)

<=>1(x+3)=308.1

<=>1(x+3)=308

<=> x+3=308:1

<=> x+3=308

<=> x=308-3

<=> x=305

b,1+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{1}{x\left(x+1\right):2}\)=1\(\dfrac{1991}{1993}\)

\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{3984}{1993}\)\(2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3984}{1993}\)

\(2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)

\(2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)

\(1-\dfrac{1}{x+1}=\dfrac{3984}{1993}:2\)

\(1-\dfrac{1}{x+1}=\dfrac{1992}{1993}\)

\(\dfrac{1}{x+1}=1-\dfrac{1992}{1993}\)

\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)

<=>1(x+1)=1993.1

<=>1(x+1)=1993

<=> x+1=1993 : 1

<=> x+1=1993

<=> x=1993-1

<=> x=1992

14 tháng 7 2016

b./ \(\Leftrightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1.\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)(b)

Mà \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)

(b) \(\Leftrightarrow x+2010=0\Leftrightarrow x=-2010\)

14 tháng 7 2016

a./

\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0.\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)(a)

Mà \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)

(a) \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Tìm x\(\in\)Z biết :a \(\frac{2}{2\times3}\)+ \(\frac{2}{3\times4}\)+ \(\frac{2}{4\times5}\)+  ... + \(\frac{2}{X\left(X+1\right)}\) = \(\frac{2007}{2009}\)b \(\frac{1}{10}\)+ \(\frac{1}{40}\) + \(\frac{1}{88}\) + ... +  \(\frac{1}{\left(3x+2\right)\left(3x+5\right)}\) = \(\frac{4}{25}\)                                                                                  Giảia \(\frac{2}{2\times3}\)+ \(\frac{2}{3\times4}\) + ......
Đọc tiếp

Tìm x\(\in\)Z biết :

\(\frac{2}{2\times3}\)\(\frac{2}{3\times4}\)\(\frac{2}{4\times5}\)+  ... + \(\frac{2}{X\left(X+1\right)}\) = \(\frac{2007}{2009}\)

\(\frac{1}{10}\)\(\frac{1}{40}\) + \(\frac{1}{88}\) + ... +  \(\frac{1}{\left(3x+2\right)\left(3x+5\right)}\) = \(\frac{4}{25}\)

                                                                                  Giải

\(\frac{2}{2\times3}\)\(\frac{2}{3\times4}\) + ... + \(\frac{2}{x\left(x-1\right)}\)\(\frac{2007}{2009}\)

\(\Leftrightarrow\)2(\(\frac{1}{2}\) \(-\) \(\frac{1}{3}\) + \(\frac{1}{3}\) \(-\)\(\frac{1}{4}\) + ... + \(\frac{1}{x}\) \(-\) \(\frac{1}{x+1}\))  = \(\frac{2007}{2009}\) \(\Leftrightarrow\)\(\frac{1}{2}\) \(-\)\(\frac{1}{x+1}\)\(\frac{2007}{4018}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}\)\(\frac{1}{2}\)\(-\)\(\frac{2007}{4018}\) \(\Leftrightarrow\) \(\frac{1}{x+1}\) =\(\frac{1}{2009}\)\(\Leftrightarrow\)x + 1 = 2009 \(\Leftrightarrow\)x = 2008

\(\frac{1}{10}\) + \(\frac{1}{40}\) + \(\frac{1}{88}\) + ... + \(\frac{1}{\left(3x+2\right)\left(3x+5\right)}\)\(\frac{4}{25}\)

\(\Leftrightarrow\) \(\frac{1}{2\times5}\) + \(\frac{1}{5\times8}\) + \(\frac{1}{8\times11}\) + ... + \(\frac{1}{\left(3x+2\right)\left(3x+5\right)}\) = \(\frac{4}{25}\)

\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{3}{2\times5}\) + \(\frac{3}{5\times8}\) + \(\frac{3}{8\times11}\) + ... + \(\frac{3}{\left(3x+2\right)\left(3x+5\right)}\) ) = \(\frac{4}{25}\)

\(\Leftrightarrow\) \(\frac{1}{3}\)(\(\frac{1}{2}\)\(-\)\(\frac{1}{5}\) + \(\frac{1}{5}\) \(-\)\(\frac{1}{8}\)+ ...+  \(\frac{1}{3x+2}\) \(-\)\(\frac{1}{3x+5}\)) =  \(\frac{4}{25}\)\(\Leftrightarrow\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3x+5}\)=\(\frac{12}{25}\)

\(\Leftrightarrow\)\(\frac{1}{3x+5}\) =\(\frac{1}{2}\)\(-\)\(\frac{12}{25}\) \(\Leftrightarrow\) 3x + 5 = 50 \(\Leftrightarrow\)3x = 45 \(\Leftrightarrow\) x = 15                                                                    Các bạn có cách làm giống mình thì trả lời nhé               

5
1 tháng 5 2017

mình cũng làm cách này

1 tháng 5 2017

a đúng rồi b từ từ

26 tháng 2 2017

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\\ \Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\\ \Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\\ 2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\\ \Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{2015}:2\\ \Rightarrow-\frac{1}{x+1}=\frac{2013}{4030}-\frac{1}{2}\\ \Rightarrow-\frac{1}{x+1}=-\frac{1}{2015}\\ \Rightarrow x=2015\)

Vậy x=2015

26 tháng 2 2017

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2013}{2015}\\ \Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\\ \Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2013}{2015}\\ 2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2013}{2015}\\ \Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{2015}:2\\ \Rightarrow-\frac{1}{x+1}=\frac{2013}{4030}\\ \Rightarrow-\frac{1}{x+1}=-\frac{1}{2015}\\ \Rightarrow x+1=2015\\ \Rightarrow x=2014\)

Vậy x=2014

xin lỗi nhé! vừa nãy mình vội quá nên làm nhầm

23 tháng 6 2020

\(\frac{4}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)< x< \frac{2}{3}.\left(\frac{-1}{6}+\frac{3}{4}\right)\)

\(\frac{4}{3}.\left(\frac{-1}{3}\right)< x< \frac{2}{3}.\left(\frac{7}{12}\right)\)

\(\frac{-4}{9}< x< \frac{7}{18}\)

\(\frac{-8}{18}< x< \frac{7}{18}\)

mà -8<x<7

⇒ x ϵ \(\left\{-7;-6;-5;-4;....;5;6\right\}\)