
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(Q=\left(\frac{\sqrt{x}^2-1}{2\sqrt{x}}\right)^2.\left[\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(Q=\left[\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}\right].\left[\frac{\left(\sqrt{x}-1+\sqrt{x}+1\right)\left(\sqrt{x}-1-\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)
\(Q=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{2\sqrt{x}}.\frac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(Q=\frac{-4\sqrt{x}}{2\sqrt{x}}=-2\)

a/ \(P=\left(\frac{x-7\sqrt{x}+12}{x-4\sqrt{x}+3}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}.\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(x-4\sqrt{x}+4\right)-1}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-2\right)^2-1}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-2-1\right)\left(\sqrt{x}-2+1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\left(\frac{x-7\sqrt{x}+12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{x-7\sqrt{x}+12+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{x-6\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
\(P=\frac{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)^2\left(\sqrt{x}-1\right)}\) => \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}\)
b/ Để P>3/4 => \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}>\frac{3}{4}\)
+/ TH1: x>1 => \(4\left(\sqrt{x}+3\right)>3\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}>-16\) => x>1
+/ TH2: 0<x<1 => \(4\left(\sqrt{x}+3\right)< 3\left(\sqrt{x}-1\right)\) => \(\sqrt{x}< -16\)=> Loại
ĐS: x>1
c/ P=2 <=> \(P=\frac{\sqrt{x}+3}{\sqrt{x}-1}=2\)
<=> \(\sqrt{x}+3=2\left(\sqrt{x}-1\right)\)
<=> \(\sqrt{x}=5=>x=25\)
\(\sqrt{x}=x\) \(\left(x\ge0\right)\)
\(\Leftrightarrow\sqrt{x}-x=0\)
\(\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\1-\sqrt{x}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}\left(tm\right)}\)
Vậy
\(\hept{\begin{cases}x=0\\x=1\end{cases}}\)