
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1)Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
\(A>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)(có 100 phân số)
\(A>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)
\(A>\frac{100}{10}=10\left(đpcm\right)\)
2)\(A=\frac{\sqrt{x}-2010}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2011}{\sqrt{x+1}}=1-\frac{2011}{\sqrt{x}+1}\)
Để A đạt giá trị nhỏ nhất thì
\(1-\frac{2011}{\sqrt{x}+1}\) đạt GTNN
\(\Leftrightarrow\frac{2011}{\sqrt{x}+1}\) đạt GTLN
\(\Leftrightarrow\sqrt{x}+1\) đạt GTNN
\(\Leftrightarrow\sqrt{x}\) đạt GTNN
\(\Leftrightarrow x=0\)
\(\Rightarrow MIN_A=\frac{-2010}{1}=-2010\)

a) \(-2\sqrt{x^2+1}=-8\)
=> \(\sqrt{x^2+1}=-8:\left(-2\right)\)
=> \(\sqrt{x^2+1}=4\)
=> \(x^2+1=16\)
=> \(x^2=16-1=15\)
=> \(\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
b) \(4+3\sqrt{x^2+2}=4\)
=> \(3\sqrt{x^2+2}=4-4=0\)
=> \(\sqrt{x^2+2}=0\)
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> ko có giá trị x t/m
c)\(\sqrt{x+1}=3\)
=> \(x+1=9\)
=> x = 9 - 1 = 8
d) TT trên

Bài 1:
a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)
Vậy \(6< \sqrt{37}\)
b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)
Vậy \(2\sqrt{3}< 3\sqrt{2}\)
p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.
c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)
Mà \(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)
Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)
b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)
c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)

a) Gọi biểu thức trên là A.
\(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)
Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:
\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.
Vậy có 1 nghiệm là x = 0
b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)
\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)
Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!
c) Tương tự như trên,bạn tự làm
d) Tương tự như câu a),bạn tự làm. Mình lười òi =))

2) so sánh
Ta có \(\sqrt{17}\)>\(\sqrt{16}\)=4
\(\sqrt{26}\)>\(\sqrt{25}\)=5
=> \(\sqrt{17}+\sqrt{26}>\sqrt{16}+\sqrt{25}\)
=>\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1\)
=>\(\sqrt{17}+\sqrt{25}+1>5+4+1=10\)
Mà \(\sqrt{99}< \sqrt{100}=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
mk giúp bạn được câu 2 thôi
Xin lỗi nhá

Bài 1:
a) \(2\left(x-\sqrt{12}\right)^2=6\Rightarrow\left(x-\sqrt{12}\right)^2=3\)
TH1l \(x-\sqrt{12}=\sqrt{3}\Rightarrow x=\sqrt{3}+\sqrt{12}=3\sqrt{3}\)
TH2: \(x-\sqrt{12}=-\sqrt{3}\Rightarrow x=-\sqrt{3}+\sqrt{12}=\sqrt{3}\)
b) \(2x-\sqrt{x}=0\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\2\sqrt{x}-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}\)
c) \(|2x+\sqrt{\frac{9}{16}}|-x=\left(\frac{1}{\sqrt{2}}\right)^2\Leftrightarrow\left|2x+\frac{3}{4}\right|-x=\frac{1}{2}\)
TH1: \(2x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{8}\)
Ta có \(2x+\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow x=-\frac{1}{4}\left(tm\right)\)
TH2: \(x< -\frac{3}{8}\)
Ta có \(-2x-\frac{3}{4}-x=\frac{1}{2}\Leftrightarrow-3x=\frac{5}{4}\Leftrightarrow x=-\frac{5}{12}\left(tm\right)\)
Bài 2: Để \(A=\frac{2\sqrt{x}+3}{\sqrt{x}-2}\) là số nguyên thì \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\)
Ta có \(\frac{2\left(\sqrt{x}-2\right)+7}{\sqrt{x}-2}=2+\frac{7}{\sqrt{x}-2}\)
Để \(\frac{2\sqrt{x}+3}{\sqrt{x}-2}\in Z\) thì \(\frac{7}{\sqrt{x}-2}\in Z\Rightarrow\sqrt{x}-2\inƯ\left(7\right)\)
Do \(\sqrt{x}-2\ge-2\Rightarrow\sqrt{x}-2\in\left\{-1;1;7\right\}\)
\(\Rightarrow x\in\left\{1;9;81\right\}\)


\(\sqrt{\left(x+1\right)^2}-2\sqrt{x+1}=0\)\(\Leftrightarrow\left|x+1\right|-2\sqrt{x+1}=0\)
\(\Leftrightarrow\left|x+1\right|=2\sqrt{x+1}\)\(\Leftrightarrow\left|x+1\right|^2=\left(2\sqrt{x+1}\right)^2\)
\(\Leftrightarrow x^2+2x+1=4x+4\)\(\Leftrightarrow x^2-2x-3=0\)
\(\Leftrightarrow\left(x-1\right)^2-4=0\)\(\Leftrightarrow\left(x-1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy ..............
\(\sqrt{x^2+1}=2\)
\(\Leftrightarrow\sqrt{x^2+1}=\sqrt{4}\)
\(\Rightarrow x^2+1=4\)
\(x^2=3\)
=>\(x=\sqrt{3}\)