\(\sqrt{9x-27}+\sqrt{25x-75}=16\)\(16\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐK: \(x\ge5\)

\(3\sqrt{x-3}+5\sqrt{x-5}=1616.\)

Đặt \(\sqrt{x-3}=a,\sqrt{x-5}=b\left(a,b\ge0\right)\)

Ta được hệ pt : \(\hept{\begin{cases}3a+5b=1616\\a^2-b^2=2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}b=\frac{1616-3a}{5}\\a^2-\left(\frac{1616-3a}{5}\right)^2-2=0\left(1\right)\end{cases}}\)

Giải (1)

\(\left(1\right)\Leftrightarrow25a^2-\left(1616-3a\right)^2-50=0\)

Giải cái này là ra nghiệm nhé :))))) SỐ TO NÊN LƯỜI :P

29 tháng 8 2020

a, \(\sqrt{4-5x}=12\Leftrightarrow4-5x=144\Leftrightarrow5x=140\Leftrightarrow x=28\)

b,ĐK :  \(x\ge7\)

 \(\sqrt{x^2-14x+49}-3x=1\Leftrightarrow\sqrt{\left(x-7\right)^2}=3x+1\)

\(\Leftrightarrow x-7=3x+1\Leftrightarrow-2x-8=0\Leftrightarrow x=-4\)( vô lí )

c, Bn làm nốt nhé 

29 tháng 8 2020

a) đk: \(x\le\frac{4}{5}\)

Ta có: \(\sqrt{4-5x}=12\)

\(\Leftrightarrow\left|4-5x\right|=144\)

\(\Rightarrow4-5x=144\)

\(\Leftrightarrow5x=-140\)

\(\Rightarrow x=-28\left(tm\right)\)

b) Ta có: \(\sqrt{x^2-14x+49}-3x=1\)

\(\Leftrightarrow\sqrt{\left(x-7\right)^2}=1+3x\)

\(\Leftrightarrow\left|x-7\right|=3x+1\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=3x+1\\x-7=-3x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-8\\4x=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=\frac{3}{2}\end{cases}}\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

k) ĐK: $x^2\geq 5$

PT $\Leftrightarrow 2\sqrt{x^2-5}-\frac{1}{3}\sqrt{x^2-5}+\frac{3}{4}\sqrt{x^2-5}-\frac{5}{12}\sqrt{x^2-5}=4$

$\Leftrightarrow 2\sqrt{x^2-5}=4$

$\Leftrightarrow \sqrt{x^2-5}=2$

$\Rightarrow x^2-5=4$

$\Leftrightarrow x^2=9\Rightarrow x=\pm 3$ (đều thỏa mãn)

l) ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 2\sqrt{x+1}+3\sqrt{x+1}-\sqrt{x+1}=4$

$\Leftrightarrow 4\sqrt{x+1}=4$

$\Leftrightarrow \sqrt{x+1}=1$

$\Rightarrow x+1=1$

$\Rightarrow x=0$

m) 

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow 4\sqrt{x+1}+2\sqrt{x+1}=16-\sqrt{x+1}+3\sqrt{x+1}$

$\Leftrightarrow 6\sqrt{x+1}=16+2\sqrt{x+1}$

$\Leftrightarrow 4\sqrt{x+1}=16$

$\Leftrightarrow \sqrt{x+1}=4$

$\Rightarrow x=15$ (thỏa mãn)

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

h) 

ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{x+5}=6$

$\Rightarrow x+5=36\Rightarrow x=31$ (thỏa mãn)

i) ĐKXĐ: $x\geq 5$

PT \(\Leftrightarrow \sqrt{x-5}+4\sqrt{x-5}-\sqrt{x-5}=12\)

\(\Leftrightarrow 4\sqrt{x-5}=12\Leftrightarrow \sqrt{x-5}=3\Rightarrow x-5=9\Rightarrow x=14\) (thỏa mãn)

j) 

ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow 3\sqrt{2x}+\sqrt{2x}-6\sqrt{2x}+4=0$

$\Leftrightarrow -2\sqrt{2x}+4=0$

$\Leftrightarrow \sqrt{2x}=2$

$\Rightarrow x=2$ (thỏa mãn)

 

6 tháng 10 2017

\(\sqrt{25x+75}+3\sqrt{x-2}-2+4\sqrt{x+3}\)\(+\sqrt{9x-18}\)

\(5\sqrt{x+3}+3\sqrt{x-2}-2+4\sqrt{x+3}+3\sqrt{x-2}\)

\(9\sqrt{x+3}+6\sqrt{x-2}-2\)

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

a)

\(\sqrt{4x-4}-\sqrt{9x-9}+\sqrt{25x-25}=4+\sqrt{16x-16}\\ \Leftrightarrow2\sqrt{x-1}-3\sqrt{x-1}-4\sqrt{x-1}+5\sqrt{x-1}=4\\ \Leftrightarrow0\sqrt{x-1}=4\\ \Rightarrow kh\text{ô}ng\:c\text{ó}\:gi\text{á}\:tr\text{ị}\:x\:th\text{õa}\:m\text{ãn}\)

b)

\(•\sqrt{7-x}+\sqrt{x-5}\le\sqrt{2.\left(7-x+x-5\right)}=2\\ •x^2-12x+38=\left(x-6\right)^2+2\ge2\)

ta thấy \(VT\le2\:v\text{à}\:VP\ge2\) nên \(VT=VP=2\)

đẳng thức xảy ra khi \(\left\{{}\begin{matrix}7-x=x-5\\x-6=0\end{matrix}\right.\Rightarrow x=6\)

vậy nghiệm của phương trình trên là x=6

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6\right)^2=\left(1-x\right)^2\\-3< =x< =1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2x+6+x-1\right)\left(2x+6+1-x\right)=0\\-3< =x< =1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(3x+5\right)\left(x+7\right)=0\\-3< =x< =1\end{matrix}\right.\Leftrightarrow x=-\dfrac{5}{3}\)

b: \(\Leftrightarrow2\cdot3\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=2x\)

\(\Leftrightarrow4\sqrt{x-3}=2x\)

\(\Leftrightarrow2\sqrt{x-3}=x\)

\(\Leftrightarrow\sqrt{4x-12}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=3\\x^2=4x-12\end{matrix}\right.\Leftrightarrow x\in\varnothing\)