Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right):\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2\right):\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2\right):\frac{2}{9}=\frac{16}{9}\)
\(x-2=\frac{32}{91}\)
\(x=\frac{32}{91}+2\)
\(x=\frac{212}{91}\)
\(\frac{|x-2|}{12}\)\(+\)\(\frac{|x-2|}{20}+\)\(\frac{|x-2|}{30}+\)\(\frac{|x-2|}{42}\)\(=\frac{70^5}{2^3.21^6}\)
\(\Rightarrow|x-2|.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{2^5.5^5.7^5}{2^3.7^6.3^6}\)
\(\Rightarrow|x-2|.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=\frac{2^2.5^5}{7.3^6}\)
\(\Rightarrow|x-2|.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=\frac{4.5^5}{21.3^5}\)
\(\Rightarrow|x-2|\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{4.5^5}{21.3^5}\)\(\Rightarrow|x-2|=\frac{5^5}{3^5}\)
ĐẾN ĐÂY DỄ RÙI TỰ GIẢI TIẾP
\(1.\)\(M=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{42}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{6.7}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{6}-\frac{1}{7}\)
\(M=1-\frac{1}{7}=\frac{6}{7}\)
Mình làm câu 1 thoi nha!
1.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}\)
=\(1-\frac{1}{7}\)
=\(\frac{6}{7}\)
Câu 2)
1)* Nếu : \(x^2-2\ge0;2-x^2\ge0=>x^2-2+2-x^2\)=28
=> \(x^2-x^2-2+2=28=>0x^2=28\) ( vô lý )
Vậy x không có giá trị
* Nếu : \(x^2-2< 0:2-x^2< 0\)
=> \(-\left(x^2-2\right)-\left(2-x^2\right)=28=>-x^2+2-2+x^2=28=>0x^2=28\left(l\right)\)
Vậy từ hai trường hợp trên x không có giá trị
Đặt A=1/3+1/6+1/10+...+2/x*(x+1)
1/2A=1/3*2+1/6*2+1/10*2+...+2/2*x*(x+1)
1/2A=1/6+1/12+1/20+...+1/x*(x+1)
1/2A=1/2*3+1/3*4+1/4*5+...+1/x*(x+1)
1/2A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)
1/2A=1/2-1/x+1
A=(1/2-1/x+1):1/2
A=1-2/x+1
Ta có A=1999/2001
Hay 1-2/x+1=1999/2001
2/x+1=1-1999/2001
2/x+1=2/2001
=>x+1=2001
=>x=2000
Cho A = 1/3+1/6+1/10+...+2/x(x+1)
1/2A= 1/3.2+1/6.2+1/10.2+...+2/x(x+1)2
1/2A= 1/6+1/12+1/20+...+1/x(x+1)
1/2A= 1/2.3+1/3.4+1/4.5+...+1/x(x+1)
1/2A= 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1
1/2A= 1/2-1/x+1
A = (1/2-1/x+1)/1/2
A = 1-2/x+1
Mà A=1999/2001
=> 1-2/x+1= 1999/2001
2/x+1= 1-1999/2001
2/x+1= 2/2001
=>x+1=2001
=>x = 2000
\(\left(\frac{21}{x}-2\right)^2-2\left(\frac{21}{x}-7\right)=x+42\)
\(\Leftrightarrow\frac{441}{x^2}-\frac{126}{x}+8=x+42\)
\(\Leftrightarrow\frac{441}{x^2}-\frac{126}{x}=x+42-8\)
\(\Leftrightarrow\frac{441}{x^2}-\frac{126}{x}=x+34\)
\(\Leftrightarrow\frac{441}{x^2}.x^2-\frac{126}{x}.x^2=x.x^2+34.x^2\)
\(\Leftrightarrow441-126x=x^3+34x^2\)
\(\Leftrightarrow x^3+34x^2=441-126x\)(chuyển vế)
\(\Leftrightarrow x^3+34x^4+126x-441=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+27x-63\right)=0\)
\(\Leftrightarrow x+7=0\)
\(\Leftrightarrow x=0-7\)
\(\Leftrightarrow x=-7\)
Vì \(x^2+27-63\ne0\)
=> x = -7
\(\left(\frac{21}{x}-2\right)^2-2\left(\frac{21}{x}-2\right)=x+42\)
\(\Leftrightarrow\frac{441}{x^2}-\frac{126}{x}+8=x+42\)
\(\Leftrightarrow\frac{441}{x^2}-\frac{126}{x}=x+42-8\)
\(\Leftrightarrow\frac{441}{x^2}-\frac{126}{x}=x+34\)
\(\Leftrightarrow\frac{441}{x^2}.x^2-\frac{126}{x}.x^2=x.x^2+34.x^2\)
\(\Leftrightarrow441-126x=x^3+34x^2\)
\(\Leftrightarrow x^3+34x^2=441-126x\)(chuyển vế nhé)
\(\Leftrightarrow x^3+34x^2+126x-441=0\)
\(\Leftrightarrow\left(x+7\right)\left(x^2+27x-63\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+7=0\\x^3+27x-63\ne0\end{cases}}\Leftrightarrow x=-7\)
=> x = -7