\(\left(\frac{-2}{9}+x\right)^2+\frac{3}{14}=\frac{131}{350}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

(-2/9)2+x2+3/14=131/350

4/81+x2           =131/350-3/14

4/81+x2           =28/175

        x2           =28/175:4/81

        x2           =81/25

=>    x             =9/5

24 tháng 7 2018

Bạn đăng ít một thôi!

24 tháng 7 2018

mk lỡ đăng rồi bạn ạ 

15 tháng 6 2018

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\)                                \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

\(\Rightarrow3x-\frac{1}{2}=0\)                                      \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)

\(3x=\frac{1}{2}\)                                                          \(\frac{1}{2}y=\frac{-3}{5}\)

\(x=\frac{1}{2}:3\)                                                             \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)

\(x=\frac{1}{6}\)                                                                  \(y=\frac{-6}{5}\)

KL: x = 1/6; y = -6/5

b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)

=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra

\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

rùi bn lm tương tự như phần a nhé!

27 tháng 6 2019

\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)

=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)

=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)

Vậy \(x\in\left\{\frac{9}{20}\right\}\)

\(b,x+\frac{1}{4}=\frac{4}{3}\)

=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)

Vậy \(x\in\left\{\frac{13}{12}\right\}\)

\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)

=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)

Vậy \(x\in\left\{\frac{25}{42}\right\}\)

\(d,\left|x+5\right|-6=9\)

=> \(\left|x+5\right|=9+6=15\)

=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)

Vậy \(x\in\left\{10;-20\right\}\)

\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)

=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)

\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)

=> \(\left|x\right|=\frac{1}{6}\)

=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)

Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)

\(g,x^2=16\)

=> \(\left|x\right|=\sqrt{16}=4\)

=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)

vậy \(x\in\left\{4;-4\right\}\)

\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)

=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)

=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)

Vậy \(x\in\left\{\frac{5}{6}\right\}\)

\(i,3^3.x=3^6\)

\(x=3^6:3^3=3^3=27\)

Vậy \(x\in\left\{27\right\}\)

\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)

=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)

Vậy \(x\in\left\{\frac{5}{27}\right\}\)

\(k,1\frac{2}{3}:x=6:0,3\)

=> \(\frac{5}{3}:x=20\)

=> \(x=\frac{5}{3}:20=\frac{1}{12}\)

Vậy \(x\in\left\{\frac{1}{12}\right\}\)

\(a)x+30\%x=-1,31\)

\(\Leftrightarrow x+\frac{3x}{10}=-1,31\)

\(\Leftrightarrow10x+3x=-13,1\)

\(\Leftrightarrow13x=-13,1\Leftrightarrow x=-\frac{131}{130}\)

\(b)\left(x-\frac{1}{2}\right):\frac{1}{3}+\frac{5}{7}=9\frac{5}{7}\)

\(\Leftrightarrow\frac{2x-1}{2}.3+\frac{5}{7}=\frac{68}{7}\)

\(\Leftrightarrow\frac{6x-3}{2}=\frac{63}{7}\)

\(\Leftrightarrow\frac{6x-3}{2}=9\)

\(\Leftrightarrow6x-3=18\)

\(\Leftrightarrow x=\frac{7}{2}\)

25 tháng 4 2018

a) x = 99/20

b) x = 7

c) x = 2

( chỉ lm đc đến đó thui nk )