Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#\(N\)
`a,` Xét Tam giác `MPH` và Tam giác `MQH` có:
`MP = MQ (g``t)`
`MH` chung
\(\widehat{MHP}=\widehat{MHQ}=90^0\)
`=>` Tam giác `MPH =` Tam giác `MQH (ch - cgv)`
`=>`\(\widehat{MPH}=\widehat{MQH}\) `( 2` góc tương ứng `)`
`b,` Vì Tam giác `MPH =` Tam giác `MQH (a)`
`=>` \(\widehat{PMH}=\widehat{QMH}\) `( 2` góc tương ứng `)`
`=> MH` là tia phân giác của \(\widehat{PMQ}\)
`c,` Ta có: \(\widehat{MPH}=\widehat{MQH}=50^0\) `(CMT)`
Xét Tam giác `MQH` có:
\(\widehat{MHQ}+\widehat{MQH}+\widehat{QMH}=180^0\) `(`đlí tổng `3` góc trong `1` tam giác `)`
\(90^0+50^0+\widehat{QMH}=180^0\)
`->`\(\widehat{QMH}=180^0-90^0-50^0=40^0\)
Bài 1:
Xét ΔBAK vuông tại A và ΔBHK vuông tại H có
BK chung
KA=KH
=>ΔBAK=ΔBHK
=>BA=BH
mà KA=KH
nên BK là trung trực của AH
=>BK vuông góc AH
Câu b đề thiếu rồi em, cần biết quan hệ giữa a và b nữa mới tính được
Bài 4:
a; A = \(\dfrac{4a-5b}{6a+b}\); biết \(\dfrac{a}{b}\) = \(\dfrac{2}{3}\)
\(\dfrac{a}{b}\) = \(\dfrac{2}{3}\) ⇒ a = \(\dfrac{2}{3}\).b
Thay a = \(\dfrac{2}{3}\)b vào biểu thức A ta có:
A = \(\dfrac{4.\dfrac{2}{3}.b-5.b}{6.\dfrac{2}{3}.b+b}\)
A = \(\dfrac{b.\left(\dfrac{8}{3}-5\right)}{b.\left(4+1\right)}\)
A = \(\dfrac{\dfrac{-7}{3}}{5}\)
A = \(\dfrac{-7}{15}\)
a) ∆ABC cân tại A
⇒ ∠ABC = ∠ACB
Mà ∠ACB = ∠ECN (đối đỉnh)
⇒ ∠ABC = ∠ECN
⇒ ∠DBM = ∠ECN
Xét hai tam giác vuông: ∆DBM và ∆ECN có:
BD = CE (gt)
∠DBM = ∠ECN (cmt)
⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)
⇒ DM = EN (hai cạnh tương ứng)
b) Do DM ⊥ BC (gt)
EN ⊥ BC (gt)
⇒ DM // EN
⇒ ∠DMI = ∠ENI (so le trong)
Xét hai tam giác vuông: ∆DMI và ∆ENI có:
DM = EN (cmt)
∠DMI = ∠ENI (cmt)
⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)
⇒ MI = NI (hai cạnh tương ứng)
⇒ I là trung điểm của MN
⇒ BC cắt MN tại trung điểm I của MN
c) Do AH ⊥ BC nên AH là đường cao của ∆ABC
Mà ∆ABC cân tại A
AH cũng là đường phân giác của ∆ABC
⇒ ∠BAH = ∠CAH
⇒ ∠BAO = ∠CAO
Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét ∆OAB và ∆OAC có:
OA là cạnh chung
∠BAO = ∠CAO (cmt)
AB = AC (cmt)
⇒ ∆OAB = ∆OAC (c-g-c)
⇒ OB = OC (hai cạnh tương ứng)
Ta có:
I là trung điểm MN (cmt)
OI ⊥ MN (gt)
⇒ OI là đường trung trực của MN
⇒ OM = ON
Do ∆DBM = ∆ECN (cmt)
⇒ BM = CN (hai cạnh tương ứng)
Xét ∆OBM và ∆OCN có:
OB = OC (cmt)
OM = ON (cmt)
BM = CN (cmt)
⇒ ∆OBM = ∆OCN (c-c-c)
d) Do ∆OBM = ∆OCN (cmt)
⇒ ∠OBM = ∠OCN (hai góc tương ứng)
Do ∆OAB = ∆OAC (cmt)
⇒ ∠OBA = ∠OCA (hai góc tương ứng)
⇒ ∠OBM = ∠OCA
Mà ∠OBM = ∠OCN (cmt)
⇒ ∠OCN = ∠OCA
Mà ∠OCN + ∠OCA = 180⁰ (kề bù)
⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰
⇒ OC ⊥ AC
a) ∆ABC cân tại A
⇒ ∠ABC = ∠ACB
Mà ∠ACB = ∠ECN (đối đỉnh)
⇒ ∠ABC = ∠ECN
⇒ ∠DBM = ∠ECN
Xét hai tam giác vuông: ∆DBM và ∆ECN có:
BD = CE (gt)
∠DBM = ∠ECN (cmt)
⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)
⇒ DM = EN (hai cạnh tương ứng)
b) Do DM ⊥ BC (gt)
EN ⊥ BC (gt)
⇒ DM // EN
⇒ ∠DMI = ∠ENI (so le trong)
Xét hai tam giác vuông: ∆DMI và ∆ENI có:
DM = EN (cmt)
∠DMI = ∠ENI (cmt)
⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)
⇒ MI = NI (hai cạnh tương ứng)
⇒ I là trung điểm của MN
⇒ BC cắt MN tại trung điểm I của MN
c) Do AH ⊥ BC nên AH là đường cao của ∆ABC
Mà ∆ABC cân tại A
AH cũng là đường phân giác của ∆ABC
⇒ ∠BAH = ∠CAH
⇒ ∠BAO = ∠CAO
Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét ∆OAB và ∆OAC có:
OA là cạnh chung
∠BAO = ∠CAO (cmt)
AB = AC (cmt)
⇒ ∆OAB = ∆OAC (c-g-c)
⇒ OB = OC (hai cạnh tương ứng)
Ta có:
I là trung điểm MN (cmt)
OI ⊥ MN (gt)
⇒ OI là đường trung trực của MN
⇒ OM = ON
Do ∆DBM = ∆ECN (cmt)
⇒ BM = CN (hai cạnh tương ứng)
Xét ∆OBM và ∆OCN có:
OB = OC (cmt)
OM = ON (cmt)
BM = CN (cmt)
⇒ ∆OBM = ∆OCN (c-c-c)
d) Do ∆OBM = ∆OCN (cmt)
⇒ ∠OBM = ∠OCN (hai góc tương ứng)
Do ∆OAB = ∆OAC (cmt)
⇒ ∠OBA = ∠OCA (hai góc tương ứng)
⇒ ∠OBM = ∠OCA
Mà ∠OBM = ∠OCN (cmt)
⇒ ∠OCN = ∠OCA
Mà ∠OCN + ∠OCA = 180⁰ (kề bù)
⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰
⇒ OC ⊥ AC
a) ∆ABC cân tại A
⇒ ∠ABC = ∠ACB
Mà ∠ACB = ∠ECN (đối đỉnh)
⇒ ∠ABC = ∠ECN
⇒ ∠DBM = ∠ECN
Xét hai tam giác vuông: ∆DBM và ∆ECN có:
BD = CE (gt)
∠DBM = ∠ECN (cmt)
⇒ ∆DBM = ∆ECN (cạnh góc vuông - góc nhọn kề)
⇒ DM = EN (hai cạnh tương ứng)
b) Do DM ⊥ BC (gt)
EN ⊥ BC (gt)
⇒ DM // EN
⇒ ∠DMI = ∠ENI (so le trong)
Xét hai tam giác vuông: ∆DMI và ∆ENI có:
DM = EN (cmt)
∠DMI = ∠ENI (cmt)
⇒ ∆DMI = ∆ENI (cạnh góc vuông - góc nhọn kề)
⇒ MI = NI (hai cạnh tương ứng)
⇒ I là trung điểm của MN
⇒ BC cắt MN tại trung điểm I của MN
c) Do AH ⊥ BC nên AH là đường cao của ∆ABC
Mà ∆ABC cân tại A
AH cũng là đường phân giác của ∆ABC
⇒ ∠BAH = ∠CAH
⇒ ∠BAO = ∠CAO
Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét ∆OAB và ∆OAC có:
OA là cạnh chung
∠BAO = ∠CAO (cmt)
AB = AC (cmt)
⇒ ∆OAB = ∆OAC (c-g-c)
⇒ OB = OC (hai cạnh tương ứng)
Ta có:
I là trung điểm MN (cmt)
OI ⊥ MN (gt)
⇒ OI là đường trung trực của MN
⇒ OM = ON
Do ∆DBM = ∆ECN (cmt)
⇒ BM = CN (hai cạnh tương ứng)
Xét ∆OBM và ∆OCN có:
OB = OC (cmt)
OM = ON (cmt)
BM = CN (cmt)
⇒ ∆OBM = ∆OCN (c-c-c)
d) Do ∆OBM = ∆OCN (cmt)
⇒ ∠OBM = ∠OCN (hai góc tương ứng)
Do ∆OAB = ∆OAC (cmt)
⇒ ∠OBA = ∠OCA (hai góc tương ứng)
⇒ ∠OBM = ∠OCA
Mà ∠OBM = ∠OCN (cmt)
⇒ ∠OCN = ∠OCA
Mà ∠OCN + ∠OCA = 180⁰ (kề bù)
⇒ ∠OCN = ∠OCA = 180⁰ : 2 = 90⁰
⇒ OC ⊥ AC
Lời giải:
Trên $AC$ lấy $E$ sao cho $AB=AE$. Xét tam giác $ABD$ và $AED$ có:
$\widehat{BAD}=\widehat{EAD}$ (do $AD$ là tia phân giác $\widehat{A}$)
$AD$ chung
$AB=AE$
$\Rightarrow \triangle ABD=\triangle AED$ (c.g.c)
$\Rightarrow BD=DE(1)$ và $\widehat{ABD}=\widehat{AED}$
Có:
$\widehat{DEC}=180^0-\widehat{AED}=180^0-\widehat{ABD}=\widehat{ECD}+\widehat{BAC}> \widehat{ECD}$
$\Rightarrow DC> DE(2)$
Từ $(1); (2)\Rightarrow DC> DB$
\(\widehat{M_1}\) = \(\widehat{M_3}\) (hai góc đối đỉnh)
\(\widehat{M_3}\) + \(\widehat{N_1}\) = 1800 (hai góc trong cùng phía)
\(\widehat{M_3}\) = 1800 - \(\widehat{N_1}\)
\(\widehat{M_3}\) = 1800 - 500
\(\widehat{M_3}\) = 1300
⇒ \(\widehat{M_1}\) = 1300
Kết luận: \(\widehat{M_1}\) = 1300
1) \(\left|\dfrac{1}{2}x-\dfrac{1}{6}\right|=\dfrac{1}{3}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{6}=\dfrac{1}{3}\\\dfrac{1}{2}x-\dfrac{1}{6}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=\dfrac{1}{2}\\\dfrac{1}{2}x=-\dfrac{1}{6}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
\(---\)
2) \(\left|\dfrac{1}{2}x+\dfrac{3}{5}\right|=\dfrac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x+\dfrac{3}{5}=\dfrac{1}{2}\\\dfrac{1}{2}x+\dfrac{3}{5}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{1}{10}\\\dfrac{1}{2}x=-\dfrac{11}{10}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{11}{5}\end{matrix}\right.\)
\(---\)
3) \(\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|=\left|\dfrac{-3}{4}\right|\)
\(\Rightarrow\left|\dfrac{3}{4}x-\dfrac{3}{4}\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x-\dfrac{3}{4}=\dfrac{3}{4}\\\dfrac{3}{4}x-\dfrac{3}{4}=-\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3}{4}x=\dfrac{3}{2}\\\dfrac{3}{4}x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)
\(---\)
4) \(14-\left|\dfrac{3x}{2}-1\right|=9\)
\(\Rightarrow\left|\dfrac{3x}{2}-1\right|=5\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3x}{2}-1=5\\\dfrac{3x}{2}-1=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{3x}{2}=6\\\dfrac{3x}{2}=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}3x=12\\3x=-8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{8}{3}\end{matrix}\right.\)
\(---\)
5) \(17-\left|\dfrac{2}{3}-4x\right|=9\)
\(\Rightarrow\left|\dfrac{2}{3}-4x\right|=8\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{2}{3}-4x=8\\\dfrac{2}{3}-4x=-8\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}4x=-\dfrac{22}{3}\\4x=\dfrac{26}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{11}{6}\\x=\dfrac{13}{6}\end{matrix}\right.\)
\(---\)
6) \(5-\left|2x-3\right|=\dfrac{1}{2}\)
\(\Rightarrow\left|2x-3\right|=\dfrac{9}{2}\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=\dfrac{9}{2}\\2x-3=-\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\dfrac{15}{2}\\2x=-\dfrac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{4}\\x=-\dfrac{3}{4}\end{matrix}\right.\)
#\(Toru\)
bn ơi