Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 11(x-6)= 4x+11
<=> 11x-66= 4x+11
<=>11x-4x= 11+66
<=> 7x= 77
=>x=11
Vậy: x=11
b) \(4\dfrac{1}{3}\left(\dfrac{1}{6}-\dfrac{1}{2}\right)=\dfrac{13}{3}.\dfrac{-1}{3}=-\dfrac{13}{9}=-1\dfrac{4}{9}\)
\(\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{3}{4}\right)=\dfrac{2}{3}.\dfrac{-7}{12}=-\dfrac{7}{18}\)
Vậy: x= -1
\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)\)
\(\frac{13}{3}.\frac{-1}{3}\le x\le\frac{2}{3}.\frac{-1}{12}\)
\(\frac{-13}{9}\le x\le\frac{-1}{18}\)
\(\Rightarrow\frac{-26}{18}\le x\le\frac{-1}{18}\)
\(\Rightarrow x\in\left(\frac{-26}{18};...;\frac{-18}{18};...\frac{-1}{18}\right)\)
mà x phải thuộc Z
\(\Rightarrow x=\frac{-18}{18}=-1\)
CHÚC BN HỌC TỐT!
a)2 _<[x+3]_<3 =>x E{0} ;b)4_<[4-x]_<5=>x E {0} ; 1<[x+3] <5=>x {0;1}
c) \(\dfrac{x+1}{35}+\dfrac{x+2}{34}+\dfrac{x+3}{33}=\dfrac{x+4}{32}+\dfrac{x+5}{31}+\dfrac{x+6}{30}\)
\(\Rightarrow\dfrac{x+1}{35}+1+\dfrac{x+2}{34}+1+\dfrac{x+3}{33}+1=\dfrac{x+4}{32}+1+\dfrac{x+5}{31}+1+\dfrac{x+6}{30}+1\)
\(\Rightarrow\dfrac{x+1+35}{35}+\dfrac{x+2+34}{34}+\dfrac{x+3+33}{33}=\dfrac{x+4+32}{32}+\dfrac{x+5+31}{31}+\dfrac{x+6+30}{30}\)
\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}=\dfrac{x+36}{32}+\dfrac{x+36}{31}+\dfrac{x+36}{30}\)
\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}-\dfrac{x+36}{32}-\dfrac{x+36}{31}-\dfrac{x+36}{30}=0\)
\(\Rightarrow\left(x+36\right)\left(\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\right)=0\)
\(\Rightarrow x+36=0\left(\text{vì }\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\ne0\right)\)
\(\Rightarrow x=-36\)
Vậy ...
a/ Ta có: \(-4\dfrac{3}{5}.2\dfrac{4}{3}\le x\le-2\dfrac{3}{5}:1\dfrac{6}{15}\)
\(\Rightarrow\dfrac{-23}{5}.\dfrac{10}{3}\le x\le\dfrac{-13}{5}:\dfrac{21}{15}\)
\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{5}.\dfrac{15}{21}\)
\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{7}\)
\(\Rightarrow-15,\left(3\right)\le x\le-1,\left(857142\right)\)
Vì x \(\in\) Z nên x \(\in\left\{-1;-2;-3;...;-15\right\}\)
Chúc bạn học tốt!!!
\(-4\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le\frac{2}{3}.\left(\left|-\frac{1}{3}\right|-\left|-\frac{1}{2}\right|-\left|-\frac{3}{-4}\right|\right)\)
\(\Leftrightarrow-\frac{13}{3}.\frac{1}{3}\le x\le\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Leftrightarrow-\frac{13}{9}\le x\le\frac{2}{4}.-\frac{11}{12}\)
\(\Leftrightarrow-\frac{13}{9}\le x\le-\frac{11}{24}\)
\(\Rightarrow x\in\left\{-1,0\right\}\) ( do \(x\in Z\) )
Vậy : \(x\in\left\{-1,0\right\}\)
\(-4\frac{1}{3}\left(\frac{1}{2}-\frac{1}{6}\right)\le x\le\frac{2}{3}\left(|\frac{-1}{3}|-|\frac{-1}{2}|-|\frac{-3}{-4}|\right)\)
\(\Rightarrow\frac{-13}{9}\le x\le\frac{-11}{18}\)
\(\Rightarrow x\in\left[\frac{-13}{9};\frac{-11}{18}\right]\)
\(\frac{2}{3}\) .\(\frac{3}{4}\)\(\le\)\(\frac{x}{18}\) \(\le\)\(\frac{7}{3}\).\(\frac{1}{3}\)
\(\frac{1}{2}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{9}{18}\le\frac{x}{18}\le\frac{14}{18}\)
\(\Rightarrow x\in\){9:10;11;12;13;14}
\(\frac{2}{3}.\left(\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}.\left(\frac{1}{2}-\frac{1}{6}\right)\)
\(\frac{2}{3}.\left(\frac{5}{4}-\frac{1}{3}\right)\le\frac{x}{18}\le\frac{7}{3}.\frac{1}{3}\)
\(\frac{2}{3}.\frac{11}{12}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{11}{18}\le\frac{x}{18}\le\frac{7}{9}\)
\(\frac{11}{18}\le\frac{x}{18}\le\frac{14}{18}\)
Vậy \(x\in\left\{11;12;13\right\}\)