Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+3\right)\left(x+7\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+3=0\\x+7=0\end{cases}}\)
\(Dễ,thấy:x^2+3>0\Rightarrow x+7=0\Rightarrow x=-7\)
\(\text{Vậy: x=(-7)}\)
Mấy câu khác tương tự nhé :v
\(\left(x^2+3\right)\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+3=0\\x+7=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=-3\left(loại\right)\\x=0-7\end{cases}}\)
\(\Leftrightarrow x=-7\)
\(\left(x^2-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-4=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm2\end{cases}}\)
\(-10\le\left|5-x\right|\le2\)
\(\Rightarrow\left|5-x\right|=1;2\)
\(\Rightarrow5-x=\pm1\) hoặc \(5-x=\pm2\)
+) \(5-x=1\Rightarrow x=4\)
+) \(5-x=-1\Rightarrow x=6\)
+) \(5-x=2\Rightarrow x=3\)
+) \(5-x=-2\Rightarrow x=7\)
Vậy \(x\in\left\{4;6;3;7\right\}\)
\(-10\le\left|5-x\right|\le2\\ \Rightarrow\left|5-x\right|=1;2\\ \Rightarrow5-x=\pm1ho\text{ặ}c5-x=\pm2\\ \)
+) \(5-x=1\\ \Rightarrow x=4\\ \)
+) \(5-x=-1\Rightarrow x=6\)
+) \(5-x=2\Rightarrow x=3\)
+) \(5-x=-2\Rightarrow x=7\\ \)
Vậy \(x\in\left\{4;6;3;7\right\}\)
\(\frac{x-4}{y-3}=\frac{4}{3}=>\left(x-4\right).3=\left(y-3\right).4\)
\(=>3x-12=4y-12=>3x=4y\left(1\right)\)
Từ x-y=5=>x=y+5
Thay vào (1),ta dược:
\(3.\left(y+5\right)=4y=>3y+15=4y=>4y-3y=15=>y=15\)
Suy ra x=15+5=20
Vậy x=20;y=15
a) a + x = 5
x = 5 - a (chuyển a sang vế phải)
b) a - x = 2
a - 2 = x (chuyển -x sang vế phải, chuyển 2 sang vế trái) hay x = a - 2
a) a + x = 5
x = 5 - a (chuyển a sang vế phải)
b) a - x = 2
a - 2 = x (chuyển -x sang vế phải, chuyển 2 sang vế trái)
hay x = a - 2
\(\left(x-5\right)^6=\left(x-5\right)^8\)
\(\Leftrightarrow\left(x-5\right)^8-\left(x-5\right)^6=0\)
\(\Leftrightarrow\left(x-5\right)^6\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^6=0\\\left(x-5\right)^6-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\\orbr{\begin{cases}x=6\\x=4\end{cases}}\end{cases}}\)
\(30.\left(x+2\right)-6.\left(x-5\right)=100\)
\(30x+60-6x+30=100\)
\(24x+90=100\)
\(24x=100-90\)
\(24x=10\)
\(x=\frac{5}{12}\)
thiếu đề nhá bạn phải là
30.(x +2 ) -6 ( x-5 ) -24x = 100 bạn ạ sorry nhá
b.
\(\frac{7}{x-1}\in Z\)
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)\)
\(\Rightarrow x-1\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{-6;0;2;8\right\}\)
c.
\(\frac{x+2}{x-1}\in Z\)
\(\Rightarrow x+2⋮x-1\)
\(\Rightarrow x-1+3⋮x-1\)
\(\Rightarrow3⋮x-1\)
\(\Rightarrow x-1\inƯ\left(3\right)\)
\(\Rightarrow x-1\in\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
\(a,\frac{x+3}{5}\in\Leftrightarrow x+3\in B5\Leftrightarrow x\in B5-3\)
\(b,\frac{7}{x-1}\in Z\Leftrightarrow x-1\inƯ7\Leftrightarrow x-1\in\left\{\pm1;\pm7\right\}\Leftrightarrow x\in\left\{-6;0;2;8\right\}\)
\(c,\frac{x+2}{x-1}\in Z\Leftrightarrow\frac{x-1+3}{x-1}\in Z\Leftrightarrow1+\frac{3}{x-1}\in Z\Leftrightarrow\frac{3}{x-1}\in Z\)
\(\Leftrightarrow x-1\inƯ3\Leftrightarrow x-1\in\left\{\pm1;\pm3\right\}\Leftrightarrow x\in\left\{-2;0;2;4\right\}\)
Ta có: \(x\left(5-x\right)\ge0\)
+) TH1: \(\left\{{}\begin{matrix}x>0\\5-x>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 5\end{matrix}\right.\Rightarrow0< x< 5\)
Mà \(x\in\mathbb{Z}\) nên: \(x\in\left\{1;2;3;4\right\}\) (nhận)
+) TH2: \(\left[{}\begin{matrix}x=0\\5-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\left(nhận\right)\)
+) TH3: \(\left\{{}\begin{matrix}x< 0\\5-x< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 0\\x>5\end{matrix}\right.\left(vô.lí\right)\)
=> loại
Vậy: ...