K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

a, Vì \(\left|3x-6\right|\ge0\) với mọi x

         \(\left(x+2\right)^2\ge0\) với mọi x

=> \(\left|3x-6\right|+\left(x+2\right)^2\ge0\)

mà \(\left|3x-6\right|+\left(x+2\right)^2=0\)

Dấu "=" xảy ra  <=> \(\orbr{\begin{cases}3x-6=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}}\)

24 tháng 7 2017

a) /3x-6/+(x+2)^2=0

vì 3x-6 lớn hơn hoặc bằng 0          Với mọi x thuộc Z

   (x+2)^2 lớn hơn hoặc bằng 0      Với mọi x thuộc Z

nên /3x-6/+(x+2)^2=0

khi 3x-6=0  suy ra x=2

     (x+2)^2=0 suy ra x=-2

vậy x=2 hoặc x=-2

10 tháng 8 2023

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3

24 tháng 2 2018

2 tháng 4 2020

\((x-6)(3x-9)>0\)
TH1:
\(\orbr{\begin{cases}x-6< 0\\3x-9< 0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x< 6\\x< 3\end{cases}}\)\(\Rightarrow x< 3\)
TH2:
\(\orbr{\begin{cases}x-6>0\\3x-9>0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x>6\\x>3\end{cases}}\)\(\Rightarrow x>6\)
Vậy \(x< 3\) hoặc \(x>6\)thì \((x-6)(3x-9)>0\)
Học tốt!

2 tháng 4 2020

20.
\((2x-1)(6-x)>0\)
TH1:
\(\orbr{\begin{cases}2x-1>0\\6-x>0\end{cases}\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}\\x< 6\end{cases}}\Rightarrow x< 6}\)
TH2
\(\orbr{\begin{cases}2x-1< 0\\6-x< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>\frac{1}{2}\\x>6\end{cases}}\Rightarrow x>\frac{1}{2}}\)
Vậy \(x< 6\)hoặc \(x>\frac{1}{2}\)thì \((2x-1)(6-x)>0\)
 

5 tháng 2 2021

\(a,\left(-31\right).\left(x+7\right)=0\\ \Rightarrow x+7=0\\ \Rightarrow x=-7\\ b,\left(8-x\right).\left(x+13\right)=0\\ \Rightarrow\left[{}\begin{matrix}8-x=0\\x+13=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=8\\x=-13\end{matrix}\right.\\ c,\left(x^2-25\right)\left(3-x\right)=0\\ \Rightarrow\left(x-5\right)\left(x+5\right)\left(3-x\right)=0\\\Rightarrow \left[{}\begin{matrix}x-5=0\\x+5=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=-5\\x=3\end{matrix}\right.\\ d,\left(x-3\right)\left(x^2+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+4=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x^2=-4\left(loại\right)\end{matrix}\right.\\ \Rightarrow x=3\)

 

5 tháng 2 2021

Mình cảm ơn nhaa!

 

25 tháng 7 2017

a,   \(x^2+5< 25\) 
\(x^2< 20\)
\(x=1;2;3;4\)

b,  \(\frac{10x+8}{10x-15}\in Z\)
\(\left(10x+8\right)-\left(10x-15\right)⋮10x-15\)
\(10x+8-10x+15⋮10x-15\)
\(23⋮10x-15\)
=>\(10x-15\inƯ_{23}=\left\{-1;1;23;-23\right\}\)

\(TH1:10x-15=-1\)                 \(TH2:10x-15=1\)                                    \(TH3:10x-15=23\)
\(x=\frac{14}{10}\notin Z\)                                                   \(x=\frac{16}{10}\notin Z\)                                                   \(x=\frac{38}{10}\notin Z\)
\(TH4:10x-15=-23\)
           \(x=\frac{8}{10}\notin Z\)

25 tháng 7 2017

b,  Vậy ko có giá trị của x nha

20 tháng 7 2021

a.   2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0

2x=- 4/5 hoặc 3x=1/2

x=-2/5 hoặc x=\(\dfrac{1}{6}\)

b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0

x=2/5 hoặc x=-\(\dfrac{4}{7}\)

d. x(1+5/8-12/16)=1

\(\dfrac{7}{8}\)x=1=> x=8/7

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
a. $(x^2-9)(5x+15)=0$

$\Rightarrow x^2-9=0$ hoặc $5x+15=0$
Nếu $x^2-9=0$

$\Rightarrow x^2=9=3^2=(-3)^2$

$\Rightarrow x=3$ hoặc $-3$
Nếu $5x+15=0$

$\Rightarrow x=-3$
b.

$x^2-8x=0$
$\Rightarrow x(x-8)=0$

$\Rightarrow x=0$ hoặc $x-8=0$

$\Rightarrow x=0$ hoặc $x=8$

c. 

$5+12(x-1)^2=53$

$12(x-1)^2=53-5=48$

$(x-1)^2=48:12=4=2^2=(-2)^2$

$\Rightarrow x-1=2$ hoặc $x-2=-2$
$\Rightarrow x=3$ hoặc $x=0$

d.

$(x-5)^2=36=6^2=(-6)^2$
$\Rightarrow x-5=6$ hoặc $x-5=-6$

$\Rightarrow x=11$ hoặc $x=-1$

e.

$(3x-5)^3=64=4^3$

$\Rightarrow 3x-5=4$

$\Rightarrow 3x=9$

$\Rightarrow x=3$

f.

$4^{2x}+2^{4x+3}=144$
$2^{4x}+2^{4x}.8=144$

$2^{4x}(1+8)=144$

$2^{4x}.9=144$

$2^{4x}=144:9=16=2^4$

$\Rightarrow 4x=4\Rightarrow x=1$