Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: |x + 2| \(\le\)1 => |x + 2| = 0
=> x + 2 = 0
x = 0 - 2
x = -2
Câu 3: |x| + |y| + |z| = 0
Vì giá trị tuyệt đối phải là số lớn hơn hoặc bằng 0
=> |x| = 0, |y| = 0, |z| = 0
=> x = 0, y = 0, z = 0
\(|x|,|y|,|z|\)luôn \(\ge0\forall x,y,z\)
\(\Rightarrow|x|+|y|+|z|\ge0\)
mà \(|x|+|y|+|z|\le0\left(gt\right)\)
\(\Rightarrow|x|+|y|+|z|=0\)\(\Leftrightarrow x=y=z=0\)
Vậy \(x=y=z=0\)
Ta có: \(\left(x^2-3\right).\left(x^2-36\right)\le0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x^2-3\ge0\\x^2-36\le0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2\ge3\\x^2\le36\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\ge\sqrt{3}ho\text{ặc}x\le-\sqrt{3}\\x\le6ho\text{ặc}x\ge-6\end{cases}}}\)
\(\orbr{\begin{cases}x^2-3\le0\\x^2-36\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2\le3\\x^2\ge36\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\le\sqrt{3}ho\text{ặc}x\ge-\sqrt{3}\\x\ge6ho\text{ặc}x\le-6\end{cases}}}\)
KL:................................................................................................................
( x^2 - 3 )( x^2 - 36 ) \(\le0\)
TH1 : ( x^2 - 3 )( x^2 - 36 ) = 0
=> x^2 - 3 = 0 hoac x^2 - 36 = 0
=> x^2 = 3 hoac x^2 = 36
=> x = \(\sqrt{3}\)hoac bang 6 , -6
TH2 : ( x^2 - 3 )( x^2 - 36 ) < 0
=> x^2 - 3 am va x^2 - 36 duong hoac x^2 - 36 am va x^2 - 3 duong
TH x^2 - 3 am ( 1 ) va x^2 - 36 duong ( 2 )
Xet ( 1 ) thi :
=> x^2 < 2
=> x thuoc 1,0,-1
Nhung de x^2 - 36 duong ( 2 ) thi IxI > 6
Ma 1,0,-1 deu < 6
=> x \(\varnothing\)
TH x^2 - 36 am ( 1 ) va x^2 - 3 duong ( 2 )
Xet ( 1 ) thi :
I x I < 6
=> x \(\in\left\{5,4,3,2,1,0,-1,-2,-3,-4,-5\right\}\)
Xet ( 2 ) thi :
I x I > 2
=> x thuoc { 5,4,3,-3,-4,-5 }
Vay x \(\in\left\{\sqrt{3},6,5,4,3,-3,-4,-5,-6\right\}\)
Vì \(\left(\frac{1}{2}x-5\right)^{10}\ge0\)và \(\left(y^2-\frac{1}{4}\right)^{20}\ge0\)
nên \(\left(\frac{1}{2}x-5\right)^{10}+\left(y^2-\frac{1}{4}\right)^{20}=0\)
<=>\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}}\)<=>\(\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)
Ta có:\(\hept{\begin{cases}\left\{\frac{1}{2}x-5\right\}^{10}\ge0\forall x\\\left\{y^2-\frac{1}{4}\right\}^{20}\ge0\forall y\end{cases}}\)
Mà \(\left\{\frac{1}{2}x-5\right\}^{10}+\left\{y^2-\frac{1}{4}\right\}^{20}\le0\)
\(\Rightarrow\left\{\frac{1}{2}x-5\right\}^{10}+\left\{y^2-\frac{1}{4}\right\}^{20}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left\{\frac{1}{2}x-5\right\}^{10}=0\\\left\{y^2-\frac{1}{4}\right\}^{20}=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}}\)
Vậy \(x=10;y=\pm\frac{1}{2}\)
\(\left(x-1\right)^2=4\)
\(\Rightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
\(\left(x+1\right)\left(x-1\right)\le0\)
\(\Rightarrow x^2-1\le0\)
\(\Rightarrow x^2\le1\)
\(\Rightarrow x\le1\)
\(\left(x-1\right)^2=4\)
\(\Rightarrow\left(x-1\right)^2=2^2\)
\(\Rightarrow x-1=2\)
\(\Rightarrow x=2+1\)
\(\Rightarrow x=3\)
Nếu như anh Thắng nói :
(x+1)x+2=(x+1)x+6
Từ đó suy ra: x+1=0 hoặc 1
Nếu x+1=0=>x=-1
Nếu x+1=1=>x=0
Vậy x=0;1
\(\left|5x-2\right|\le0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-2\le0\\5x-2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{2}{5}\\x\ge-\dfrac{2}{5}\end{matrix}\right.\)
\(\text{Vì: }\)\(x\in Z\)
\(S=\left\{0\right\}\)
\(|5x-2| \ge 0\forallx\) mà anh :v