Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left|x+\frac{1}{101}\right|\ge0\); \(\left|x+\frac{2}{101}\right|\) \(\ge0\); ...; \(\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow101x\ge0\)
và \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|=x+\frac{1}{101}\); \(\left|x+\frac{2}{101}\right|=x+\frac{2}{101}\); ...; \(\left|x+\frac{100}{101}\right|=x+\frac{100}{101}\)
Thay vào đề bài ta đc:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Rightarrow\) \(100x\) + \(\left(\frac{1+2+...+101}{101}\right)=101x\)
\(\Rightarrow100x+101=101x\)
\(\Rightarrow x=101\)
Vậy \(x=101.\)
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+\left|x+\frac{3}{101}\right|+....+\left|x+\frac{100}{101}\right|\)=101x (1)
điều kiện:101x\(\ge\) 0 \(\Rightarrow\) x\(\ge\) 0
từ (1) \(\Rightarrow\) \(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}\)=101x
\(\Rightarrow\) 100x+(\(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\))=101x
\(\Rightarrow\) 100x+\(\frac{5050}{101}\)=101x
\(\Rightarrow\) \(\frac{5050}{101}\)=101x-100x
\(\Rightarrow\) x=50
k bt mk lm sai hay lm đúng nữa
nếu mk lm sai thì thôi nha!
Vì \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|\ge0\forall x\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
Từ điều kiện trên ta có :
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(100x+\frac{1+2+...+100}{101}=101x\)
\(101x-100x=\frac{5050}{101}\)
\(x=50\)
Vậy x = 50
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+....+\left|x+\frac{100}{101}\right|=101x\)
\(KĐ:101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
\(x+\frac{1}{101}+x+\frac{2}{101}+....+x+\frac{100}{101}=101x\)
\(100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow101-100x=\frac{1+2+....+100}{101}\)
\(x=\frac{\left(1+100\right)\left(100-1+1\right):2}{101}\)
\(x=\frac{101.100:2}{101}\)
\(x=50\)
Do \(\left|a\right|\ge0\) nên:
a) \(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\ge0\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\) (100 số hạng x)
\(\Leftrightarrow100x+5050=101x\Leftrightarrow201x=5050\Leftrightarrow x=\frac{5050}{201}\)
b) Đề sai nhé!
a ) \(3-4.\left|5-6x\right|=7\)
\(\Leftrightarrow4.\left|5-6x\right|=-4\)
\(\Leftrightarrow\left|5-6x\right|=-1\)
\(\Leftrightarrow\) Không thõa mãn ( vì \(x\ge0\) )
b) Do \(\left|x+2\right|\ge0;\left|x+\frac{3}{5}\right|\ge0;\left|x+\frac{1}{2}\right|\ge0\)
=> \(4x\ge0\)
=> \(x\ge0\)
Lúc này ta có: \(\left(x+2\right)+\left(x+\frac{3}{5}\right)+\left(x+\frac{1}{2}\right)=4x\)
=> \(\left(x+x+x\right)+\left(2+\frac{3}{5}+\frac{1}{2}\right)=4x\)
=> \(3x+\frac{31}{10}=4x\)
=> \(4x-3x=\frac{31}{10}\)
=> \(x=\frac{31}{10}\)
Vậy \(x=\frac{31}{10}\)
c) Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)
=> \(101x\ge0\)
=> \(x\ge0\)
Lúc này ta có: \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 số x
=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)
=> \(\frac{101.50}{101}=101x-100x\)
=> \(x=50\)
Vậy x = 50
\(\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+.....+\left|x+\dfrac{100}{101}\right|=101x\left(1\right)\)
VT(1) \(\ge0\) \(\Rightarrow VP\left(1\right)\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+...+\left|x+\dfrac{100}{101}\right|=100x+\dfrac{5050}{101}=101x\\ \Rightarrow x=50\)
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
\(\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+\left|x+\dfrac{3}{101}\right|+...+\left|x+\dfrac{100}{101}\right|=101x\)
Ta có : \(\left\{{}\begin{matrix}\left|x+\dfrac{1}{101}\right|\ge0\\\left|x+\dfrac{1}{102}\right|\ge0\\....\\\left|x+\dfrac{100}{101}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\dfrac{1}{101}\right|+\left|x+\dfrac{2}{101}\right|+\left|x+\dfrac{3}{101}\right|+...+\left|x+\dfrac{100}{101}\right|\ge0\)
\(\Rightarrow101x\ge0\)
\(\Rightarrow x\ge0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{1}{101}\right|=x+\dfrac{1}{101}\\\left|x+\dfrac{2}{101}\right|=x+\dfrac{2}{101}\\....\\\left|x+\dfrac{100}{101}\right|=x+\dfrac{100}{101}\end{matrix}\right.\)
\(\Rightarrow x+\dfrac{1}{101}+x+\dfrac{2}{101}+x+\dfrac{3}{101}+...+x+\dfrac{100}{101}=101x\)
\(\Rightarrow100x+\dfrac{1+2+3+...+100}{101}=101x\)
\(\Rightarrow100x+\dfrac{5050}{101}=101x\)
\(\Rightarrow100x+50=101x\)
\(\Rightarrow101x-100x=50\)
\(\Rightarrow x=50\)
Vậy \(x=50\)
Vì \(\left|x+\frac{1}{101}\right|+\left|x+\frac{1}{102}\right|+....+\left|x+\frac{100}{101}\right|>0\)
\(\Rightarrow101x>0\)
\(\Rightarrow x>0\)
\(\Rightarrow\left(x+\frac{1}{101}\right)+.....+\left(x+\frac{100}{101}\right)=101x\)
\(\Rightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+....+\frac{100}{101}\right)=101x\)
\(\Rightarrow x=\frac{\left(100+1\right)100:2}{101}\)
\(\Rightarrow x=\frac{50.101}{101}\)
\(\Rightarrow x=50\)
Vậy x = 50
Do \(\left|x+\frac{1}{101}\right|\ge0;\left|x+\frac{2}{101}\right|\ge0;\left|x+\frac{3}{101}\right|\ge0;...;\left|x+\frac{100}{101}\right|\ge0\)
=> \(101x\ge0\)
=> \(x\ge0\)
=> \(\left(x+\frac{1}{101}\right)+\left(x+\frac{2}{101}\right)+\left(x+\frac{3}{101}\right)+...+\left(x+\frac{100}{101}\right)=101x\)
=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{101}+\frac{2}{101}+\frac{3}{101}+...+\frac{100}{101}\right)=101x\)
100 số x 100 phân số
=> \(100x+\frac{\left(1+100\right).100:2}{101}=101x\)
=> \(\frac{101.50}{101}=101x-100x\)
=> \(x=50\)