Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x-1\right)^3=-27\)
\(\left(2x-1\right)^3=-3^3\)
\(2x-1=-3\)
\(2x=-3+1\)
\(2x=-2\)
\(x=-2:2\)
\(x=-1\)
b) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
*\(\Rightarrow2x-1=1\)
\(2x=1+1\)
\(2x=2\)
\(x=2:2\)
\(x=1\)
*\(\Rightarrow2x-1=-1\)
\(2x=-1+1\)
\(2x=0\)
\(x=0:2\)
\(x=0\)
*\(\Rightarrow2x-1=0\)
\(2x=0+1\)
\(2x=1\)
\(x=1:2\)
\(x=\frac{1}{2}\)
Vậy \(x=\left\{1;0;\frac{1}{2}\right\}\)
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
a. \(\left(\frac{-1}{3}\right)^3.x=\frac{1}{81}\)
\(\Leftrightarrow\frac{1}{81}:\left(-\frac{1}{27}\right)\)
\(\Leftrightarrow x=\frac{-1}{3}\)
b. x8 = 16 . x6
<=> x8 : x6 = 16
<=> x2 = 42
<=> x = 4
c. (2x - 1)6 = (2x - 1)8
<=> x = \(\orbr{\begin{cases}x=1\\x=0\end{cases}}\)
Vậy x = 1 hoặc 0
a, Ta có : \(\left(2x-1\right)^4=16\)
=> \(\left(\left(2x-1\right)^2\right)^2-\left(2^2\right)^2=0\)
=> \(\left(\left(2x-1\right)^2-2^2\right)\left(\left(2x-1\right)^2+2^2\right)=0\)
=> \(\left(2x-1-2\right)\left(2x-1+2\right)\left(\left(2x-1\right)^2+2^2\right)=0\)
Mà \(\left(2x-1\right)^2+2^2>0\)
=> \(\left(2x-3\right)\left(2x+1\right)=0\)
=> \(\left[{}\begin{matrix}x=\frac{3}{2}\\x=-\frac{1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{\frac{3}{2};-\frac{1}{2}\right\}\)
b, Ta có : \(\left(2x+1\right)^4=\left(2x+1\right)^6\)
=> \(\left(2x+1\right)^6-\left(2x+1\right)^4=0\)
=> \(\left(2x+1\right)^4\left(\left(2x+1\right)^2-1\right)=0\)
=> \(\left(2x+1\right)^4\left(2x+1-1\right)\left(2x+1+1\right)=0\)
=> \(2x\left(2x+1\right)^4\left(2x+2\right)=0\)
=> \(\left[{}\begin{matrix}2x=0\\2x+1=0\\2x+2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=-\frac{1}{2}\\x=-1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là \(S=\left\{0;-1;-\frac{1}{2}\right\}\)
c, Ta có : \(\left|\left|x+3\right|-8\right|=20\)
TH1 : \(x+3\ge0\left(x\ge-3\right)\)
=> \(\left|x+3\right|=x+3\)
=> \(\left|x-5\right|=20\)
TH1.1 : \(x-5\ge0\left(x\ge5\right)\)
=> \(\left|x-5\right|=x-5=20\)
=> \(x=25\left(TM\right)\)
TH1.2 : \(x-5< 0\left(x< 5\right)\)
=> \(\left|x-5\right|=5-x=20\)
=> \(x=-15\) ( không thỏa mãn )
TH2 : \(x+3< 0\left(x< -3\right)\)
=> \(\left|x+3\right|=-x-3\)
=> \(\left|-x-11\right|=20\)
TH1.1 : \(-x-11\ge0\left(x\le-11\right)\)
=> \(\left|-x-11\right|=-x-11=20\)
=> \(x=-31\left(TM\right)\)
TH1.2 : \(-x-11< 0\left(x>-11\right)\)
=> \(\left|-x-11\right|=x+11=20\)
=> \(x=9\) ( không thỏa mãn )
Vậy phương trình có tập nghiệm là \(S=\left\{-31;25\right\}\)
a, ( 2x - 1 )4 = 16
=> 2x - 1 = 2 hoặc -2
TH1: 2x - 1 = 2
=> 2x = 2 + 1 = 3; => x = \(\frac{3}{2}\)
TH2: 2x - 1 = -2
=> 2x = -2 + 1 = -1; => x =- \(\frac{1}{2}\)
b, ( 2x + 1 )4 = ( 2x + 1 )6
=> ( 2x + 1 )4 - ( 2x + 1 )6 = 0
= ( 2x + 1 )4 - ( 2x - 1 )2 . ( 2x - 1 )4
= ( 2x + 1 )4 . [ 1 - ( 2x - 1 )2 ] = 0
Ta có ( 2x + 1 )4 và ( 2x - 1 )2 \(\ge\) 0 vì có số mũ chẵn
Ta có 2 TH
TH1: ( 2x - 1 )4 = 0
=> 2x - 1 = 0; => x = \(\frac{1}{2}\)
TH2: 1 - ( 2x - 1 )2 = 0; => ( 2x - 1 )2 = 1
=> 2x - 1 = 1; => x = 1
c, //x + 3/ - 8/ = 20
Ta có 2 TH, mỗi TH lại chia thành 2 TH nhỏ hơn
TH1: /x + 3/ - 8 = 20
=> /x + 3/ = 28
=> x + 3 = 28 hoặc -28
TH1 nhỏ: x + 3 = 28; => x = 25
TH2 nhỏ: x + 3 = -28; => x = -31
TH2: /x + 3/ - 8 = -20
=> /x + 3/ = -12; => TH này loại
=> x = 25; -31
1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)
⇒ \(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)
⇒ \(\frac{1}{3}x=\frac{11}{15}\)
⇒ \(x=\frac{11}{15}:\frac{1}{3}\)
⇒ \(x=\frac{11}{5}\)
Vậy \(x=\frac{11}{5}.\)
2) \(2,5:7,5=x:\frac{3}{5}\)
⇒ \(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)
⇒ \(\frac{1}{3}=x:\frac{3}{5}\)
⇒ \(x=\frac{1}{3}.\frac{3}{5}\)
⇒ \(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}.\)
4) \(\left|x\right|+\left|x+2\right|=0\)
Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)
⇒ \(\left|x\right|+\left|x+2\right|=0\)
⇒ \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.
⇒ \(x\in\varnothing\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
10) \(5-\left|1-2x\right|=3\)
⇒ \(\left|1-2x\right|=5-3\)
⇒ \(\left|1-2x\right|=2\)
⇒ \(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)
Chúc bạn học tốt!
9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)
\(10=26:\left(2x-1\right)\)
\(2x-1=26:10\)
\(2x-1=2,6\)
\(2x=2,6+1\)
\(2x=3,6\)
\(x=3,6:2\)
\(x=1,8\)
\(\left(2x-1\right)^6=\left(2x-1\right)^8.\)
\(\Leftrightarrow\left(2x-1\right)^8-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\left(2x-1\right)^6.\left[\left(2x-1\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(2x-1\right)^6=0\\\left(2x-1\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\\left(2x-1\right)^2=1\end{cases}}\)
Đến đây bạn tự giải nha.
x=1/2 hoặc x=1 hoặc x=0
\(\Rightarrow\orbr{\begin{cases}2x=1\\\orbr{\begin{cases}\\2x-1=-1\end{cases}}2x-1=1\end{cases}}\)
suy ra 2x -1=0
2x=1
x=1:2
x=\(\frac{1}{2}\)