\(x\in N\)sao cho  \(\sqrt{x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2019

Đề bài là có vô số dâu căn nên ta có thể giải như sau:

\(\sqrt{x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}}=x\)

\(\Leftrightarrow x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}=x^2\)

\(\Leftrightarrow x+2x=x^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

9 tháng 2 2018

\(M=\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{\sqrt{x}}.\left(\frac{1}{1-\sqrt{x}}-1\right)\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)  \(+\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}-1}\)

\(M=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) \(+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(M=\frac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(M=\frac{3\left(x+\sqrt{x}-2\right)}{x+\sqrt{x}-2}\)

\(M=3\)

9 tháng 2 2018

b) \(\sqrt{x}=M\)

\(\Leftrightarrow x=M^2\)

thay vào ta có: 

\(x=3^2\)

\(x=9\)

c) \(M=3\in N\)

\(\Rightarrow x=3\)

d) \(M>1\Leftrightarrow x>1\)

24 tháng 12 2018

Mình bị nhầm

b) \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1+2}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)

Để P\(\in Z\) thì \(\sqrt{x}-1\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)

\(\sqrt{x}-1\ge-1\)

Vậy \(\sqrt{x}-1\in\left\{\pm1;2\right\}\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\sqrt{x}-1=-1\\\sqrt{x}-1=2\\\sqrt{x}-1=1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=0\left(tm\right)\\x=4\left(tm\right)\\x=9\left(tm\right)\end{matrix}\right.\)

Vậy x=0, x=4,x=9 thì P\(\in Z\)

24 tháng 12 2018

a)

\(=\dfrac{3x+3\sqrt{x}-3-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) với \(x\ge0;x\ne1\)

b)

P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=1+\dfrac{2}{\sqrt{x}-1}\)

Vì 1 \(\in Z\) nên

Để P \(\in\) Z thì \(2⋮\sqrt{x}-1=>\sqrt{x}-1\in\) Ư(2) = { -2;-1;1;2 }

=> \(\sqrt{x}\) = { -1;0;2;3 }

=> x ={0;4;9} thỏa mãn đkxđ

Vậy, ...............

NV
11 tháng 8 2020

5.

ĐKXĐ: ...

\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)

\(\Leftrightarrow x=5\)

6.

ĐKXĐ: \(-4\le x\le4\)

\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)

\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)

\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)

\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)

\(\Rightarrow x=\frac{96}{25}\)

NV
11 tháng 8 2020

1.

Bạn coi lại đề

2.

ĐKXĐ: \(1\le x\le2\)

Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:

\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)

\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)

\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)

\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)

\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)

21 tháng 8 2017

Đề có sai ko bn?Phương Phan Thùy

16 tháng 5 2019

1/ \(\sqrt{x-2}-\sqrt{1-3x}=0\\ đk:\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

=> pt vô no

2/ \(\sqrt{15-x}+\sqrt{3-x}=6\\ đk\left\{{}\begin{matrix}15-x\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le15\\x\le3\end{matrix}\right.\Leftrightarrow x\le3\)

\(pt\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow2\sqrt{\left(15-x\right)\left(3-x\right)}=2x+36\)

\(\Leftrightarrow4\left(15-x\right)\left(3-x\right)=\left(2x+18\right)^2\left(đk:x\ge-9\right)\)

\(\Leftrightarrow-144x=144\Leftrightarrow x=-1\left(nhan\right)\)

NV
16 tháng 5 2019

Câu 1: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ \(\Rightarrow\) pt vô nghiệm

Câu 2:

ĐKXĐ: \(x\le3\)

\(\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow x+9=\sqrt{x^2-18x+45}\) (\(x\ge-9\))

\(\Leftrightarrow x^2+18x+81=x^2-18x+45\)

\(\Leftrightarrow36x=-36\Rightarrow x=-1\)

Câu 3:

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\)

\(\Leftrightarrow x-1=4+x+1+4\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}=-\frac{3}{2}\)

Phương trình vô nghiệm