Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)\(-\frac{3}{5}\cdot x=\frac{1}{4}+0,75\)
\(-\frac{3}{5}\cdot x=\frac{1}{4}+\frac{3}{4}=\frac{4}{4}=1\)
\(x=1\div\left(-\frac{3}{5}\right)\)
\(x=-\frac{5}{3}\)
\(b,\)\(\left(\frac{1}{7}-\frac{1}{3}\right)\cdot x=\frac{28}{5}\times\left(\frac{1}{4}-\frac{1}{7}\right)\)
\(\left(\frac{3}{21}-\frac{7}{21}\right)\cdot x=\frac{28}{5}\cdot\left(\frac{7}{28}-\frac{4}{28}\right)\)
\(-\frac{4}{21}\cdot x=\frac{28}{5}\cdot\frac{3}{28}\)
\(-\frac{4}{21}\cdot x=\frac{3}{5}\)
\(x=\frac{3}{5}\div\left(-\frac{4}{21}\right)\)
\(x=-\frac{63}{20}\)
\(c,\)\(\frac{5}{7}\cdot x=\frac{9}{8}-0,125\)
\(\frac{5}{7}\cdot x=\frac{9}{8}-\frac{1}{8}\)
\(\frac{5}{7}\cdot x=1\)
\(x=1\div\frac{5}{7}\)
\(x=\frac{7}{5}\)
\(d,\)\(\left(\frac{2}{11}+\frac{1}{3}\right)\cdot x=\left(\frac{1}{7}-\frac{1}{8}\right)\cdot36\)
\(\left(\frac{6}{33}+\frac{11}{33}\right)\cdot x=\left(\frac{8}{56}-\frac{7}{56}\right)\cdot36\)
\(\frac{17}{33}\cdot x=\frac{1}{56}\cdot36\)
\(\frac{17}{33}\cdot x=\frac{9}{14}\)
\(x=\frac{9}{14}\div\frac{17}{33}\)
\(x=\frac{9}{14}\cdot\frac{33}{17}=\frac{297}{238}\)
1/2.x-3/5=-4/5
1/2.x=-4/5+3/5
1/2.x=-1/5
x=-1/5:1/2
x=-2/5
kl:.....
câu đầu mik tính ra sốn to lắm
câu cuối mik tính ko chia hết nên chỉ làm đc câu giữa
Mk sửa đề nha :
20202020 x ( 710 : 78 - 3 x 24 - 22020 : 22020 )
= 20202020 x ( 72 - 48 - 20 )
= 20202020 x ( 49 - 48 - 1 )
= 20202020 x 0
= 0
Study well ! >_<
1/2 * x - 3/5 = -4 /5
1/2 * x = - 4 /5 + 3/5
1/2* x = -1/5
x = -1/5 : 1/2
x = -1/5 *2
x = -2 /5
Vay x = -2/5
b ) ( x - 2/3 ) : -3 /7 = - 9/14
x - 2/3 = - 9/14 * -3/7
x - 2/3 = 27/98
x = 27/98+ 2/3
x = 81/294 + 196/ 294
x = 277/294
Vay x= 277/294
Ban oi , k cho mk nha .
\(x^2-25\%x=0\)
\(x.x-\frac{1}{4}x=0\)
\(x.\left(x-\frac{1}{4}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-\frac{1}{4}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=0+\frac{1}{4}\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)
~ Hok tốt ~
\((2,7.x-1\frac{1}{2})\div\frac{2}{7}=\frac{-21}{4}\) \(3\frac{1}{3}.x+16\frac{3}{4}=-13.25\)
\(2,7.x-1\frac{1}{2}=-\frac{21}{4}\cdot\frac{2}{7}\) \(\frac{10}{3}.x+\frac{67}{4}=-13.25\)
\(2,7.x-\frac{3}{2}=-\frac{3}{2}\) \(\frac{10}{3}.x+\frac{67}{4}=-\frac{53}{4}\)
\(2,7.x=-\frac{3}{2}+\frac{3}{2}\) \(\frac{10}{3}.x=-\frac{53}{4}-\frac{67}{4}\)
\(2,7.x=0\) \(\frac{10}{3}.x=-30\)
\(x=0:2,7\) \(x=-30:\frac{10}{3}\)
\(x=0\) \(x=-9\)
Vậy x=0 Vậy x= -9
\(\left(4.5-2.x\right):\frac{3}{4}=1\frac{1}{3}\) \(1.5+1\frac{1}{4}.x=\frac{2}{3}\)
\(\left(4.5-2.x\right)=1\frac{1}{3}\cdot\frac{3}{4}\) \(1\frac{1}{4}.x=\frac{2}{3}-1.5\)
\(4.5-2.x=\frac{4}{3}\cdot\frac{3}{4}\) \(\frac{5}{4}.x=\frac{2}{3}-\frac{3}{2}\)
\(4.5-2.x=1\) \(\frac{5}{4}.x=-\frac{5}{6}\)
\(2.x=4.5-1\) \(x=-\frac{5}{6}:\frac{5}{4}\)
\(2.x=3.5\) \(x=-\frac{2}{3}\)
\(x=3.5:2\)
\(x=1.75\) Vậy \(x=-\frac{2}{3}\)
Vậy x=1.75
\(d=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).........\left(1+\frac{1}{99.101}\right)\)
\(=\frac{4}{3}.\frac{9}{2.4}.............\frac{10000}{99.101}\)
\(=\frac{2.2}{3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}............\frac{100.100}{99.101}\)
\(=\frac{2.3.4..........100}{2.3.4............99}.\frac{2.3.4...........100}{3.4...........101}\)
\(=100.\frac{2}{101}\)\(=\frac{200}{101}\)
\(C=\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{1994}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{1993}{1994}\)
\(=\frac{1\times2\times3\times...\times1993}{2\times3\times4\times...\times1994}\)
\(=\frac{1}{1994}\) (Giản ước còn lại như này)
a) \(\frac{3}{4}-\frac{1}{2}.x=1\)
\(\frac{1}{2}.x=\frac{-1}{4}\)
\(x=\frac{-1}{4}:\frac{1}{2}=\frac{-1}{2}\)
Vậy x= \(\frac{-1}{2}\)
b) \(\frac{9}{2}-\left|x-\frac{3}{4}\right|=\frac{1}{2}\)
\(\left|x-\frac{3}{4}\right|=\frac{9}{2}-\frac{1}{2}\)
\(\left|x-\frac{3}{4}\right|=4\)
=> \(\orbr{\begin{cases}x-\frac{3}{4}=4\\x-\frac{3}{4}=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=4+\frac{3}{4}=\frac{19}{4}\\x=-4+\frac{3}{4}=\frac{-13}{4}\end{cases}}\)
Vậy.......