Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow-3\le x< 1\)
\(\Leftrightarrow x\in\left\{-3;-2;-1;0\right\}\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{15+(-138)}{41}\le x< \frac{1\cdot3}{6}+\frac{1\cdot2}{6}+\frac{1}{6}\)
\(\Rightarrow\frac{-123}{41}\le x< \frac{3}{6}+\frac{2}{6}+\frac{1}{6}\)
\(\Rightarrow-3\le x< 1\Leftrightarrow x\in\left\{-3;-2;-1;0\right\}\)
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow-3\le x< 1\)
\(\Rightarrow-3\le-3;-2;-1;0< 1\)
\(\Rightarrow x\in\left\{-3;-2;-1;0\right\}\)
~ Hok tốt ~
\(\frac{15}{41}+\frac{-138}{41}< x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\Leftrightarrow\frac{-123}{41}< x< \frac{1.3+1.2+1}{6}\)
\(\Leftrightarrow-3< x< 1\)
\(\Rightarrow x\in\left\{-2;-1;0\right\}\)
\(\frac{x}{5}=\frac{15}{2}-\frac{51}{10}\)
\(\frac{x}{5}=\frac{15.5-51}{10}\)
\(\frac{x}{5}=\frac{24}{10}\)
\(\frac{x}{5}=\frac{12}{5}\)
\(x=12\)
\(a)\frac{1}{3}+\frac{-2}{5}+\frac{1}{6}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{2}{7}+\frac{-1}{4}+\frac{3}{5}+\frac{5}{7}\)
\(\Rightarrow\frac{1}{3}+\frac{1}{6}+\frac{-2}{5}+\frac{-1}{5}\le x< \frac{-3}{4}+\frac{-1}{4}+\frac{2}{7}+\frac{5}{7}+\frac{3}{5}\)
\(\Rightarrow\frac{2}{6}+\frac{1}{6}+\frac{-3}{5}\le x< -1+1+\frac{3}{5}\)
\(\Rightarrow\frac{1}{2}+\frac{-3}{5}\le x< \frac{3}{5}\)
\(\Rightarrow\frac{-1}{10}\le x< \frac{6}{10}\)
\(\Rightarrow-1\le x< 6\)
\(\Rightarrow x\in\left\{-1;0;1;2;3;4;5\right\}\)
Bài b tương tự
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{21}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{21}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{20}{41}\)
\(\Leftrightarrow20\left(x+2\right)=41\)
\(\Leftrightarrow x-2=\frac{41}{20}\)
\(\Leftrightarrow x=\frac{41}{20}+2\)
\(\Leftrightarrow x=\frac{81}{20}\)
\(\frac{1}{1.3}+...+\frac{1}{a\left(a+2\right)}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{a\left(a+2\right)}\right)=\frac{1}{2}\left(1-\frac{1}{3}+....-\frac{1}{a+2}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{a+2}\right)=\frac{20}{41}\Rightarrow a+2=41\Leftrightarrow a=39\)
\(1\frac{13}{15}.0,75-\left(\frac{8}{15}+25\%\right).\frac{24}{47}-3\frac{12}{13}:3\)
\(=\frac{28}{15}.\frac{3}{4}-\left(\frac{8}{15}+\frac{1}{4}\right).\frac{24}{47}-\frac{51}{13}:3\)
\(=\frac{7}{5}-\frac{47}{60}.\frac{24}{47}-\frac{17}{13}\)
\(=\frac{7}{5}-\frac{2}{5}-\frac{17}{13}\)
\(=\frac{-4}{13}\)
\(4\frac{1}{3}.\left(\frac{1}{6}-\frac{1}{2}\right)\le x\le\frac{2}{3}.\left(\frac{1}{3}-\frac{1}{2}-\frac{3}{4}\right)\)
\(\Leftrightarrow\frac{13}{3}.\frac{-1}{3}\le x\le\frac{2}{3}.\frac{-11}{12}\)
\(\Leftrightarrow\frac{-13}{9}\le x\le\frac{-11}{18}\)
\(\Leftrightarrow x=-1\)
Bài làm
\(\frac{15}{41}+\frac{-138}{41}\le x< \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\)
\(\frac{123}{41}\le x< 1\)
\(\frac{123}{41}\le x< \frac{41}{41}\)
\(\Rightarrow123\le x< 41\)
\(\Rightarrow x\in\varnothing\)
=> -123 / 41 < hoặc = x < 1
=> -3 < hoặc = x <1
=>x = ( -3 ; -2 ; -1 ; 0 )