Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)
\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)
b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)
\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)
\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)
c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)
\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)
\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)
d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)
e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)
\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)
a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)
\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{303}{610}\)
\(\Rightarrow B=\frac{101}{610}\)
b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)
\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)
\(\Rightarrow C=\frac{408}{205}\)
c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)
\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)
\(\Rightarrow D=\frac{1350}{271}\)
Đề: X=\(\frac{1}{1+2}\)+\(\frac{1}{1+2+3}\)+.......+\(\frac{1}{1+2+3+4+20}\)
X=\(\frac{1}{2.3:2}\)+\(\frac{1}{3.4:2}\)+\(\frac{1}{4.5:2}\)+......+\(\frac{1}{20.21:2}\)
X=\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)\(\frac{2}{4.5}\)+........+\(\frac{2}{20.21}\)
X=2.(\(\frac{1}{2}\).3+\(\frac{1}{3}\).4+\(\frac{1}{4}\).5+.....+\(\frac{1}{20}\).21)
X=2.(\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+......+\(\frac{1}{20}\)-\(\frac{1}{21}\))
X=2.(\(\frac{1}{2}\)-\(\frac{1}{21}\))
X=2.(\(\frac{21}{42}\)-\(\frac{2}{42}\))
X=2.\(\frac{19}{42}\)
X=\(\frac{19}{21}\)
Mn xem thử đúng ko nha!
Ta có: \(1+2=\frac{2.3}{2}\); \(1+2+3=\frac{3.4}{2}\); .......... ; \(1+2+3+....+20=\frac{20.21}{2}\)
\(\Rightarrow X=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+.......+\frac{1}{\frac{20.21}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+........+\frac{2}{20.21}=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{20.21}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{20}-\frac{1}{21}\right)=2.\left(\frac{1}{2}-\frac{1}{21}\right)=2.\frac{19}{42}=\frac{19}{21}\)
\(a,\frac{2}{3}\cdot x-\frac{4}{7}=\frac{1}{8}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{1}{8}+\frac{4}{7}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{7}{56}+\frac{32}{56}\)
\(\Leftrightarrow\frac{2}{3}\cdot x=\frac{39}{56}\)
\(\Leftrightarrow x=\frac{39}{56}:\frac{2}{3}=\frac{39}{56}\cdot\frac{3}{2}=\frac{39\cdot3}{56\cdot2}=\frac{117}{112}\)
\(b,\frac{2}{7}-\frac{8}{9}\cdot x=\frac{2}{3}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{2}{7}-\frac{2}{3}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{6}{21}-\frac{14}{21}\)
\(\Leftrightarrow\frac{8}{9}\cdot x=\frac{-8}{21}\)
\(\Leftrightarrow x=\frac{-8}{21}:\frac{8}{9}=\frac{-8}{21}\cdot\frac{9}{8}=\frac{-8\cdot9}{21\cdot8}=\frac{-1\cdot3}{7\cdot1}=\frac{-3}{7}\)
Làm nốt hai bài cuối đi nhé
Study well >_<
Mk k chép lại đề bài nha
a)\(\frac{2}{3}.x=\frac{1}{8}+\frac{4}{7}\)
\(\frac{2}{3}.x=\frac{7}{56}+\frac{32}{56}\)
\(\frac{2}{3}.x=\frac{39}{56}\)
\(x=\frac{39}{56}:\frac{2}{3}\)
\(x=\frac{39}{56}.\frac{3}{2}\)
\(x=\frac{117}{112}\)
Mk sợ sai lém!!!
a) \(\frac{1}{3}-\frac{-1}{6}=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}\)
b) \(2\frac{1}{3}+4\frac{1}{5}=\frac{7}{3}+\frac{21}{5}=\frac{98}{15}\)
c) \(\frac{4}{9}-\frac{13}{3}-\frac{4}{9}-\frac{10}{3}=\left(\frac{4}{9}-\frac{4}{9}\right)-\left(\frac{13}{3}+\frac{10}{3}\right)\)
\(=0-\frac{23}{3}=\frac{-23}{3}\)
d) \(4-\left(2-\frac{5}{2}\right)+0,5=4-2+\frac{5}{2}+\frac{1}{2}=2+3=5\)
dễ vãi nồi thế mà cũng hỏi