Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/2*(1-1/3+1/3-1/5+....+1/x+1/x+2)
=1/2*(1-1/x+2)
=>1/2*x+1/x+2=20/21
Đến đó đưa về giống tìm x nha
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x(x+2)}=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x(x+2)}\right]=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right]=\frac{20}{41}\)
\(\Rightarrow\frac{1}{2}\left[1-\frac{1}{x+2}\right]=\frac{20}{41}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{20}{41}:\frac{1}{2}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{41}\Leftrightarrow x+2=41\Leftrightarrow x=39\)
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}.\)
\(1-\frac{1}{x+2}=\frac{20}{41}\Rightarrow\frac{1}{x+2}=\frac{21}{41}=\frac{21}{21x+42}\Rightarrow21x+42=41\Rightarrow x=-\frac{1}{21}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x.\left(x+2\right)}=\frac{5}{11}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{5}{11}\)
\(\Rightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{5}{11}\Rightarrow1-\frac{1}{x+2}=\frac{5}{11}\div\frac{1}{2}=\frac{10}{11}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{10}{11}=\frac{1}{11}\Rightarrow x+2=11\Rightarrow x=11-2=9\)
\(\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{x+\left(x+2\right)}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{x}-\frac{1}{x+2}\)
\(=1-\frac{1}{x+2}=\frac{5}{11}\)
\(\frac{1}{x+2}=1-\frac{5}{11}=\frac{6}{11}\)
=> không có kết quả
Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(2A=2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\right)\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2x}{x\left(x+2\right)}=\frac{20}{41}\)
Ta Có \(\frac{1}{n}-\frac{1}{n+k}=\frac{n+k}{n\left(n+k\right)}-\frac{n}{n\left(n+k\right)}=\frac{k}{n\left(n+k\right)}\)
Áp Dụng Công Thức Trên Ta Có
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2x}{x\left(x+2\right)}=\frac{20}{41}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}\)
\(2A=\frac{1}{1}-\frac{1}{x+1}=\frac{20}{41}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{1}-\frac{20}{41}\)
\(\Rightarrow\frac{1}{x+1}=\frac{21}{41}\)
\(\Rightarrow\left(x+1\right).21=41\)
\(\Rightarrow\left(x+1\right)=\frac{41}{21}\)
\(\Rightarrow x=\frac{20}{21}\)
\(1-\frac{1}{x+2}=\frac{20}{41}\Rightarrow\frac{1}{x+2}=\frac{21}{41}\Rightarrow x=mấybạntựtính\)
\(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+\frac{x}{5\cdot7}+........+\frac{x}{39\cdot41}=\frac{1}{41}\)
\(\Rightarrow x\cdot\left[\frac{1}{2}\cdot\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+.........+\frac{1}{39\cdot41}\right)\right]=\frac{1}{41}\)
\(\Rightarrow x\cdot\left[\frac{1}{2}\cdot\left(1-\frac{1}{41}\right)\right]=\frac{1}{41}\)
\(\Rightarrow x\cdot\left(\frac{1}{2}\cdot\frac{40}{41}\right)=\frac{1}{41}\)
\(\Rightarrow x\cdot\frac{20}{41}=\frac{1}{41}\)
\(\Rightarrow x=\frac{1}{41}:\frac{20}{21}\)
\(\Rightarrow x=\frac{1}{41}\cdot\frac{21}{20}\)
\(\Rightarrow x=\frac{21}{820}\)
ai k mh mh k lại
k cho mh nha
\(\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left\{\left(2x+1\right).\left(2x+3\right)\right\}}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\cdot\left(\frac{2x+3}{2x+3}-\frac{1}{2x+3}\right)=\frac{49}{99}\)
\(\frac{1}{2}.\frac{2x+2}{2x+3}=\frac{49}{99}\)
\(\frac{2x+2}{2x+3}=\frac{49}{99}:\frac{1}{2}\)
\(\frac{2x+2}{2x+3}=\frac{98}{99}\)
=) \(2x+2=98\)và \(2x+3=99\)
TH1 : \(2x+2=98\)
\(2x=98-2\)
\(2x=96\)
\(x=96:2\)
\(x=48\)( THỎa mãn )
TH2 :
\(2x+3=99\)
\(2x=99-3\)
\(2x=96\)
\(x=96:2\)
\(x=48\)( THỎa mãn )
Vậy x = 48
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{x.\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow\frac{1}{2}.\left(1-\frac{1}{x+2}\right)=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{20}{41}\div\frac{1}{2}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{40}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{41}\)
\(\Leftrightarrow x+2=41\)
\(\Leftrightarrow x=41-2\)
\(\Leftrightarrow x=39\)
a, 2/3 của -420 là :
-420 x 2/3 = -280
Số cần tìm là :
-280 x 5/8 = -175
Vậy số cần tìm là -175
b, 1/1.3 + 1/3.5 + 1/5.7 + ... + 1/x ( x + 2 ) = 1005 / 2011
1/2 x ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/ ( x ( x + 2 ) = 1005 / 2011
1/2 x ( 1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/ x + 2 ) = 1005 / 2011
1/2 x ( 1 - 1/ x + 2 ) = 1005 / 2011
1 - 1 / x + 2 = 1005 / 2011 : 1/2
1 - 1 / x + 2 = 2010 / 2011
x + 2 / x + 2 - 1 / x + 2 = 2010 / 2011
x + 2 - 1 / x + 2 = 2010 / 2011
x + 1 / x + 2 = 2010 / 2011
+> x + 1 = 2010
x = 2010 - 1
x = 2009
+> x + 2 = 2011
x = 2011 - 2
x = 2009
Vậy x = 2009
Tk nha Đúng đó !!
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{20}{41}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{21}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{21}{41}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{20}{41}\)
\(\Leftrightarrow20\left(x+2\right)=41\)
\(\Leftrightarrow x-2=\frac{41}{20}\)
\(\Leftrightarrow x=\frac{41}{20}+2\)
\(\Leftrightarrow x=\frac{81}{20}\)
\(\frac{1}{1.3}+...+\frac{1}{a\left(a+2\right)}=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{a\left(a+2\right)}\right)=\frac{1}{2}\left(1-\frac{1}{3}+....-\frac{1}{a+2}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{a+2}\right)=\frac{20}{41}\Rightarrow a+2=41\Leftrightarrow a=39\)