K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Chỉ mình với!

x y z ( 50 o m n

Bài làm

a) Vì \(\widehat{xOy}\)và \(\widehat{yOz}\)là hai góc kề bù

=> \(\widehat{xOy}+\widehat{yOz}=180^o\) 

hay   50o   + \(\widehat{yOz}\)= 180o

=>     \(\widehat{yOz}\)            = 180- 50o

=>     \(\widehat{yOz}\)             = 130o

Vậy \(\widehat{yOz}\)= 130o

b) - Vì Om là tia phân giác của \(\widehat{xOy}\)

=> \(\widehat{mOy}=\frac{\widehat{xOy}}{2}=\frac{50^o}{2}=25^o\)(1)

- Vì On là tia phân giác của \(\widehat{yOz}\)

=> \(\widehat{yOn}=\widehat{\frac{yOz}{2}}=\frac{130^o}{2}=65^o\)(2) 

Từ (1) và (2) => \(\widehat{mOy}+\widehat{yOn}=\widehat{mOn}\)

                     hay   25o     +   65o     =   \(\widehat{mOn}\)

                      =>  \(\widehat{mOn}\)             =   25o+65o

                      => \(\widehat{mOn}\)              =  90o

Mà góc vuông có số đo bằng 90o

=> Om\(\perp\)On

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Các tia Om, On tương ứng là tia phân giác của góc yOz và xOz vì:

Tia Om nằm trong góc yOz và \(\widehat {yOm} = \widehat {mOz}\)

Tia On nằm trong góc xOz và \(\widehat {xOn} = \widehat {nOz}\)

b) Vì các tia Om, On tương ứng là tia phân giác của góc yOz và xOz nên: \(\widehat {yOm} = \widehat {mOz} = \frac{1}{2}.\widehat {yOz};\widehat {xOn} = \widehat {nOz} = \frac{1}{2}.\widehat {xOz}\)

Mà tia Oz nằm trong góc xOy nên \(\widehat {yOz} + \widehat {xOz} = \widehat {xOy}\)

\( \Rightarrow \widehat {mOz} + \widehat {zOn} = \frac{1}{2}.\widehat {yOz} + \frac{1}{2}.\widehat {xOz} = \frac{1}{2}.\widehat {xOy}\)

Mà tia Oz nằm trong góc mOn nên \(\widehat {mOz} + \widehat {zOn} = \widehat {mOn}\) và \(\widehat {xOy} = 90^\circ \)

\( \Rightarrow \widehat {mOn} = \frac{1}{2}.90^\circ  = 45^\circ \)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Hai góc \(\widehat {xOy}\) và \(\widehat {yOz}\) có cạnh Oy chung, không có điểm trong chung

b) Ta có:

\(\begin{array}{l}\widehat {xOy} = 30^\circ ,\widehat {yOz} = 45^\circ ,\widehat {xOz} = 75^\circ \\ \Rightarrow \widehat {xOy} + \widehat {yOz} = \widehat {xOz}\end{array}\)

c) Ta có: \(\widehat {mOn} + \widehat {nOp} = 33^\circ  + 147^\circ  = 180^\circ \)

1: Xét ΔOIA vuông tại I và ΔOIB vuông tại I có

OI chung

IA=IB

=>ΔOIA=ΔOIB

=>OA=OB

=>ΔOAB cân tại O

2: OA+AM=OM

OB+BN=ON

mà OA=OB và AM=BN

nên OM=ON

=>ΔOMN cân tại O

Xét ΔOMN có OA/OM=OB/ON

nên AB//MN

 

6 tháng 7 2021

xOy + tOx = 180( kề bù)

xOy + yOz = 180( kề bù) 

mà xOy = xOy. 

=> 2 góc này bằng nhau ( 2 góc cùng kề bù với góc thứ 3 thì bằng nhau).

=> 2 góc đối đỉnh.

like và tim bạn nhé

 

9 tháng 7 2021

2 góc kề bù cùng với góc thứ 3 thì = ??????batngo

10 tháng 8 2018

x O z y m n

Om là phân giác góc xOy  

=> góc mOy = 1/2 góc xOy

On là phân giác góc yOz

=> góc yOn = 1/2 góc yoz

suy ra:   góc mOy + góc yOn = 1/2 (góc xOy + góc yOz)

<=> góc mOn = 1/2.1800 = 900     (do góc xOy và góc yOz kề bù)

10 tháng 8 2018

Om phân giác xoy => moy=1/2xoy hay xoy=2moy

tương tự => noy=1/2yoz hay yoz=2noy

Lại có:

xoy+yoz=180

=>2moy +2noy=180

=>moy+noy=90 hay mon =90

24 tháng 5 2019

x x' y y' O m n

a) +) Vì Ox đối với Ox' và Oy đối với Oy' nên \(\widehat{xOy}\) và \(\widehat{x'Oy'}\) đối đỉnh

\(\Rightarrow\)\(\widehat{xOy}=\)\(\widehat{x'Oy'}\)

hay  \(\widehat{x'Oy'}\)\(=40^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{x'Oy}=180^0\) (kề bù)

hay \(40^0+\widehat{x'Oy}=180^0\)

\(\Leftrightarrow\widehat{x'Oy}=180^0-40^0\)

\(\Leftrightarrow\widehat{x'Oy}=140^0\)

   +) Ta có: \(\widehat{xOy}+\widehat{xOy'}=180^0\) (kề bù)

hay \(40^0+\widehat{xOy'}=180^0\)

\(\Leftrightarrow\widehat{xOy'}=180^0-40^0\)

\(\Leftrightarrow\widehat{xOy'}=140^0\)

b) Vì \(\widehat{xOy}=\widehat{x'Oy'}\)(hai góc đối đỉnh)

Mà Om là tia phân giác của góc xOy và On là tia phân giác của x'Oy' nên Om đối On (đpcm)

27 tháng 7 2019

y m x O x' n y'

a, Vì góc x'Oy' và góc xOy là hai góc đối đỉnh, mà \(\widehat{xOy}=40^0\)nên \(\widehat{x'Oy'}=40^0\). Góc xOy và góc xOy' là hai góc kề bù nên \(\widehat{xOy}+\widehat{xOy'}=180^0\)hay \(40^0+\widehat{xOy'}=180^0\)

=> \(\widehat{xOy'}=180^0-40^0=140^0\)

Góc xOy' là góc đối đỉnh với góc xOy' nên \(\widehat{xOy}=\widehat{x'Oy}=140^0\)

b, Om,On theo thứ tự là các tia phân giác của hai góc xOy và x'Oy' nên \(\widehat{xOm}=\widehat{mOy}=\frac{1}{2}\widehat{xOy}\)và \(\widehat{nOx'}=\widehat{mOy'}=\frac{1}{2}\widehat{x'Oy'}\)mà \(\widehat{xOy}=\widehat{x'Oy'}\), do đó \(\widehat{xOm}=\widehat{mOy}=\widehat{nOx'}=\widehat{nOy'}=\frac{1}{2}\widehat{xOy}\).

Ta có : \(\widehat{xOm}=\widehat{nOy'}=\widehat{y'Ox}=\widehat{xOm}=\widehat{y'Ox}+\widehat{xOm}+\widehat{mOy}\)

\(=\widehat{y'Ox}+\widehat{xOy}=180^0\)

Góc mOn là góc bẹt,vì thế hai tia Om,On là hai tia đối nhau

23 tháng 2 2022

`Answer:`

Ta có `hat{zOt}+\hat{yOz}=90^o`

\(\Rightarrow\frac{1}{2}.Oz+\widehat{yOz}=90^o\)

\(\Rightarrow\frac{1}{2}.4\widehat{yOz}+\widehat{yOz}=90^o\)

\(\Rightarrow\widehat{yOz}.3=90^o\)

\(\Rightarrow\widehat{yOz}=30^o\)

`=>\hat{xOz}=120^o` (Vì `\hat{xOz}=4\hat{yOz}`

Vậy `\hat{xOy}=\hat{yOz}+\hat{xOz}=120^o+30^o=150^o`