\(\sqrt{x-2\sqrt{x-1}=\sqrt{x-1}-1}\)

e, \(\sqr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2021

- Đề sai nhiều vậy sửa lại đi bạn ;-;

e) Ta có: \(\sqrt{1-12x+36x^2}=5\)

\(\Leftrightarrow\left|6x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=6\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{2}{3}\right\}\)

AH
Akai Haruma
Giáo viên
21 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

AH
Akai Haruma
Giáo viên
17 tháng 8 2019

Bài 1:

a)

\(\sqrt{13-2\sqrt{42}}=\sqrt{6+7-2\sqrt{6.7}}=\sqrt{(\sqrt{7}-\sqrt{6})^2}=|\sqrt{7}-\sqrt{6}|=\sqrt{7}-\sqrt{6}\)

b)

\(\sqrt{46+6\sqrt{5}}=\sqrt{46+2\sqrt{45}}=\sqrt{45+1+2\sqrt{45.1}}=\sqrt{(\sqrt{45}+1)^2}=\sqrt{45}+1\)

\(=3\sqrt{5}+1\)

c)

\(\sqrt{12-3\sqrt{15}}=\sqrt{\frac{24-6\sqrt{15}}{2}}=\sqrt{\frac{24-2\sqrt{135}}{2}}=\sqrt{\frac{15+9-2\sqrt{15.9}}{2}}\)

\(=\sqrt{\frac{(\sqrt{15}-\sqrt{9})^2}{2}}=\frac{\sqrt{15}-\sqrt{9}}{\sqrt{2}}=\frac{\sqrt{15}-3}{\sqrt{2}}\)

d)

\(\sqrt{11+\sqrt{96}}=\sqrt{11+2\sqrt{24}}=\sqrt{8+3+2\sqrt{8.3}}\)

\(=\sqrt{(\sqrt{8}+\sqrt{3})^2}=\sqrt{8}+\sqrt{3}\)

24 tháng 5 2020

bạn làm dc k mà kêu mk

28 tháng 5 2020

mk là hsg toán mà. nhg con đó làm bth lắm

2 tháng 7 2018

a) \(\sqrt{\left(x-3\right)^2}=3\Leftrightarrow\left|x-3\right|=3\) \(\Leftrightarrow\left[{}\begin{matrix}x-3=3\\x-3=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\left(N\right)\\x=0\left(N\right)\end{matrix}\right.\)

b) \(\sqrt{4x^2-20x+25}+2x=5\Leftrightarrow\left|2x-5\right|+2x-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-5\ge0\\2x-5+2x-5=0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-5\le0\\5-2x+2x-5=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\4x-10=0\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{5}{2}\\0x=0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge\dfrac{5}{2}\\x=\dfrac{10}{4}\left(N\right)\end{matrix}\right.\\x\le\dfrac{5}{2}\end{matrix}\right.\) ** 10/4 = 5/2 rồi**

Kl: x \< 5/2

c) \(\sqrt{1-12x+36x^2}=5\Leftrightarrow\left|1-6x\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}1-6x=5\\1-6x=-5\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\left(N\right)\\x=1\left(N\right)\end{matrix}\right.\)

Kl: x=-2/3, x=1

d) Đk: x >/ 1

\(\sqrt{x+2\sqrt{x-1}}=2\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}+1=2\left(1\right)\\\sqrt{x-1}+2=-2\left(VN\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\)(N)

Kl: x=2

e) Đk: x >/ 1

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}\ge1\\\left|\sqrt{x-1}-1\right|=\sqrt{x-1}-1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x-1}-1=\sqrt{x-1}-1\) (luôn đúng)

kl: x >/ 1

f) \(\sqrt{x^2-\dfrac{1}{2}x+\dfrac{1}{16}}=\dfrac{1}{4}-x\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\left|\dfrac{1}{4}-x\right|=\dfrac{1}{4}-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{4}\\\dfrac{1}{4}-x=\dfrac{1}{4}-x\end{matrix}\right.\)

(luôn đúng)

Kl: x \< 1/4

Lần sau xé nhỏ câu hỏi giùm con nha má, để nhiều thế này thất thu T_T!

20 tháng 9 2020

\(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)

Ta đánh giá vế phải \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=\sqrt{2\left(x-4\right)^2+9}+\sqrt{3\left(x-4\right)^2+16}\ge\sqrt{9}+\sqrt{16}=3+4=7\)(Do \(\left(x-4\right)^2\ge0\forall x\))

Như vậy, để \(\sqrt{2x^2-16x+41}+\sqrt{3x^2-24x+64}=7\)(hay dấu "=" xảy ra) thì \(\left(x-4\right)^2=0\)hay x = 4

Vậy nghiệm duy nhất của phương trình là 4

22 tháng 9 2020

f, \(\sqrt{8+\sqrt{x}}+\sqrt{5-\sqrt{x}}=5\left(đk:25\ge x\ge0\right)\)

\(< =>\sqrt{8+\sqrt{x}}-\sqrt{9}+\sqrt{5-\sqrt{x}}-\sqrt{4}=0\)

\(< =>\frac{8+\sqrt{x}-9}{\sqrt{8+\sqrt{x}}+\sqrt{9}}+\frac{5-\sqrt{x}-4}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\frac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{\sqrt{x}-1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}=0\)

\(< =>\left(\sqrt{x}-1\right)\left(\frac{1}{\sqrt{8+\sqrt{x}}+\sqrt{9}}-\frac{1}{\sqrt{5-\sqrt{x}}+\sqrt{4}}\right)=0\)

\(< =>x=1\)( dùng đk đánh giá cái ngoặc to nhé vì nó vô nghiệm )

19 tháng 8 2017

a, \(\left|\sqrt{x-1}+1\right|=2\) \(2\) (dk \(x\ge1\) )

\(\Rightarrow\sqrt{x-1}+1=2\Rightarrow\sqrt{x-1}=1\Rightarrow x=2\)

b. \(\sqrt{x-1}\left(\sqrt{x-2}-1\right)=0\) (dk \(x\ge2\) )

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-2}=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=3\left(tm\right)\end{cases}}}\)

kl x=3

c,\(\sqrt{x^2-2.x.\frac{1}{4}+\frac{1}{16}}=\frac{1}{4}-x\)

dk \(\frac{1}{4}-x\ge0\Rightarrow x\le\frac{1}{4}\)

\(\Rightarrow\left|x-\frac{1}{4}\right|=\frac{1}{4}-x\Rightarrow\frac{1}{4}-x=\frac{1}{4}-x\)

pt luon dung voi moi \(x\le\frac{1}{4}\)

d,\(\left|6x-1\right|=5\)

th1 \(6x-1\ge0\Rightarrow x\ge\frac{1}{6}\)

\(\Rightarrow6x-1=5\Rightarrow x=1\)

th2 \(6x-1< 0\Rightarrow x< \frac{1}{6}\) 

\(\Rightarrow1-6x=5\Rightarrow x=\frac{-2}{3}\)

vay \(x=1,x=\frac{-2}{3}\)

19 tháng 6 2019

Bài 4 :

\(a,\sqrt{x-1}=2\)

=> \(x-1=2^2=4\)

=>\(x=4+1=5\)

Vậy \(x\in\left\{5\right\}\)

\(b,\sqrt{x^2-3x+2}=2\)

=> \(x^2-3x+2=2\)

=> \(x^2-3x=2-2=0\)

=>\(x.\left(x-3\right)=0\)( phân tích đa thức thanh nhân tử )

=> \(\left[{}\begin{matrix}x=0\\x-3=0=>x=0+3=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\)

MÌNH Biết vậy thôi ,

19 tháng 6 2019

Bài 4 :

c) \(\sqrt{4x+1}=x+1\)ĐK : \(x\ge-1\)

\(\Leftrightarrow4x+1=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+2x+1-4x-1=0\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)( thỏa )

d) \(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}-\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}+1\right|-\left|\sqrt{x-1}-1\right|=2\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow\sqrt{x-1}+1-\sqrt{x-1}+1=2\)

\(\Leftrightarrow2=2\)( luôn đúng )

+) Xét \(1\le x< 2\):

\(pt\Leftrightarrow\sqrt{x-1}+1-1+\sqrt{x-1}=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)( loại )

Vậy \(x\ge2\)

28 tháng 7 2020

Bài 2 :

a) Sửa đề :

 \(A=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)

\(A=\sqrt{3}-1-\sqrt{3}\)

\(A=-1\)

b) \(B=\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}\)

\(B=\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(\sqrt{2}-1\right)^2}\)

\(B=\sqrt{2}+1-\sqrt{2}+1\)

\(B=2\)

c) \(C=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=2-\sqrt{3}+2+\sqrt{3}\)

\(C=4\)

d) \(D=\sqrt{23+8\sqrt{7}}-\sqrt{7}\)

\(D=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)

\(D=4+\sqrt{7}-\sqrt{7}\)

\(D=4\)

28 tháng 7 2020

Bài 1 :

a) Để \(\sqrt{\left(x-1\right)\left(x-3\right)}\) có nghĩa

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\ge0\)

TH1 :\(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow x\ge3}\)

TH2 : \(\hept{\begin{cases}x-1\le0\\x-3\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\le3\end{cases}\Leftrightarrow}x\le1}\)

Vậy để biểu thức có nghĩa thì \(\orbr{\begin{cases}x\ge3\\x\le1\end{cases}}\)

b) Để \(\sqrt{\frac{1-x}{x+2}}\)có nghĩa

\(\Leftrightarrow\frac{1-x}{x+2}\ge0\)

TH1 : \(\hept{\begin{cases}1-x\ge0\\x+2\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Leftrightarrow}-2\le x\le1}\)

TH2 : \(\hept{\begin{cases}1-x\le0\\x+2\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le-2\end{cases}\Leftrightarrow x\in\varnothing}\)

Vậy để biểu thức có nghĩa thì \(-2\le x\le1\)

23 tháng 9 2020

d, ĐKXĐ: \(x\ge-\frac{1}{4}\)

\(pt\Leftrightarrow4x^2+4x+2=2\sqrt{4x+1}\)

\(\Leftrightarrow4x^2+\left(4x+1-2\sqrt{4x+1}+1\right)=0\)

\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2=0\\\sqrt{4x+1}-1=0\end{matrix}\right.\Leftrightarrow x=0\left(tm\right)\)

23 tháng 9 2020

a, ĐKXĐ: \(x\ge-1\)

\(pt\Leftrightarrow\sqrt{x+1}+\sqrt{x+8}=7\)

\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x+8}\right)^2=49\)

\(\Leftrightarrow x+1+x+8+2\sqrt{\left(x+1\right)\left(x+8\right)}=49\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+8\right)}=20-x\)

\(\Leftrightarrow\left\{{}\begin{matrix}20-x\ge0\\\left(x+1\right)\left(x+8\right)=\left(20-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le20\\49x=392\end{matrix}\right.\Leftrightarrow x=8\left(tm\right)\)

b, ĐKXĐ: \(x\ge-1\)

\(pt\Leftrightarrow\frac{x-3}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\frac{x-3}{\sqrt{x+1}+2}=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\frac{1}{\sqrt{x+1}+2}\right)=0\)

Do \(\frac{1}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\frac{1}{\sqrt{x+1}+2}>0,\forall x\ge-1\)

Nên \(x=3\left(tm\right)\)

c, ĐKXĐ: \(x\ge-\frac{3}{2}\)

\(pt\Leftrightarrow\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\)

1 tháng 8 2018

\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(\Rightarrow\sqrt{x}+3\)

\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)

\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)

\(\Rightarrow\sqrt{y}-1\)

\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)

\(\Rightarrow\sqrt{xy}\)

1 tháng 8 2018

\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)

\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)

\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)

\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)

\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)

\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)

\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)