Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 9(x + 1)2 - (3x - 2)(3x + 2) = 10
=> 9(x2 + 2x + 1) - (9x2 - 4) = 10
=> 9x2 + 18x + 9 - 9x2 + 4 = 10
=> 9x2 - 9x2 + 18x + 13 = 10
=> 18x = 10 - 13
=> 18x = -3
=> x = \(-\frac{1}{6}\)
Ta có : 9(x + 1)2 - (3x - 2)(3x + 2) = 10
=> 9(x2 + 2x + 1) - (9x2 - 4) = 10
=> 9x2 + 18x + 9 - 9x2 + 4 = 10
=> 9x2 - 9x2 + 18x + 13 = 10
=> 18x = 10 - 13
=> 18x = -3
=> x = \(-\frac{1}{6}\)
Mình sẽ làm theo đề bài của mình nếu đúng thì ... nha
Biến đổi vế phải ta có :
( x + y) [ ( x - y)^2 + xy ] = ( x + y)( x^2 - 2xy + y^2 + xy)
= ( x+ y)( x^2 - xy+ y^2)
= x^3 + y^3
VẬy VT = VP đẳng thức được CM
1. \(\left(2x-1\right)^3+\left(x+2\right)^3=\left(3x+1\right)^3\)
\(\Rightarrow8x^3-12x^2+6x-1+x^3+6x^2+12x+8=27x^3+27x^2+9x+1\)
\(\Rightarrow-18x^3-33x^2+9x+6=0\)\(\Rightarrow\left(x+2\right)\left(-18x^2+3x+3\right)=0\)
\(\Rightarrow\left(x+2\right)\left(2x-1\right)\left(-9x-3\right)=0\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2};x=-\frac{1}{3}\end{cases}}\)
Vậy \(x=-2;x=\frac{1}{2};x=-\frac{1}{3}\)
2. \(\frac{x-1988}{15}+\frac{x-1969}{17}+\frac{x-1946}{19}+\frac{x-1919}{21}=10\)
\(\Rightarrow\left(\frac{x-1988}{15}-1\right)+\left(\frac{x-1969}{17}-2\right)+\left(\frac{x-1946}{19}-3\right)+\left(\frac{x-1919}{21}-4\right)=0\)
\(\Rightarrow\frac{x-2003}{15}+\frac{x-2003}{17}+\frac{x-2003}{19}+\frac{x-2003}{21}=0\)
\(\Rightarrow x-2003=0\)do \(\frac{1}{15}+\frac{1}{17}+\frac{1}{19}+\frac{1}{21}\ne0\)
Vậy \(x=2003\)
3. Đặt \(\hept{\begin{cases}2009-x=a\\x-2010=b\end{cases}}\)
\(\Rightarrow\frac{a^2+ab+b^2}{a^2-ab+b^2}=\frac{19}{49}\Rightarrow49a^2+49ab+49b^2=19a^2-19ab+19b^2\)
\(\Rightarrow30a^2+68ab+30b^2=0\Rightarrow\left(5a+3b\right)\left(3a+5b\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5a=-3b\\3a=-5b\end{cases}}\)
Với \(5a=-3b\Rightarrow5\left(2009-x\right)=-3\left(x-2010\right)\)
\(\Rightarrow-2x=-4015\Rightarrow x=\frac{4015}{2}\)
Với \(3a=-5b\Rightarrow3\left(2009-x\right)=-5\left(x-2010\right)\)
\(\Rightarrow2x=4023\Rightarrow x=\frac{4023}{2}\)
Vậy \(x=\frac{4023}{2}\)hoặc \(x=\frac{4015}{2}\)
7x2 - 7x( x - 3 ) = x + 2
⇔ 7x2 - 7x2 + 21x = x + 2
⇔ 21x = x + 2
⇔ 21x - x = 2
⇔ 20x = 2
⇔ x = 2/20 = 1/10
ta có: A=x3+x2-x+a=(x2-x)(x+2)+(x+a)
Để A chia hết cho x+2<=>(x+a)chia hết cho x+2<=>a=2
Vậy a=2
\(\frac{x-1}{2018}+\frac{x-10}{2009}+\frac{x-19}{2000}=3\)
\(\frac{x-1}{2018}+\frac{x-10}{2009}+\frac{x-19}{2000}-3=0\)
\(\left(\frac{x-1}{2018}-1\right)+\left(\frac{x-10}{2009}-1\right)+\left(\frac{x-19}{2000}-1\right)=0\)
\(\frac{x-1-2018}{2018}+\frac{x-10-2009}{2009}+\frac{x-19-2000}{2000}=0\)
\(\frac{x-2019}{2018}+\frac{x-2019}{2009}+\frac{x-2019}{2000}=0\)
\(\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2009}+\frac{1}{2000}\right)=0\)
Vì \(\left(\frac{1}{2018}+\frac{1}{2009}+\frac{1}{2000}\right)\ne0\)do đó :
\(x-2019=0\)
\(x=2019\)
\(\frac{x-1}{2018}+\frac{x-10}{2009}+\frac{x-19}{2000}=3.\)
\(\Leftrightarrow\frac{x-1}{2018}-1+\frac{x-10}{2009}-1+\frac{x-19}{2000}-1=0\)
\(\Leftrightarrow\frac{x-2019}{2018}+\frac{x-2019}{2009}+\frac{x-2019}{2000}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2009}+\frac{1}{2000}\right)=0\)
\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)