Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(2^x.4=128\Leftrightarrow2^x=32\Leftrightarrow2^x=2^5\Rightarrow x=5\)
b)\(\left(2x+1\right)=125\Leftrightarrow2x=126\Leftrightarrow x=13\)
c)\(x^{15}=x\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}\)
d) \(\left(x-5\right)^4=\left(x-5\right)^5\Leftrightarrow\orbr{\begin{cases}x-5=1\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=5\end{cases}}\)
a,
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
b,
2x = 124
x = 62
c,
\(x^{15}-x=0\)
\(x\left(x^{14}-1\right)=0\)
\(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x^{14}=1\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
d,
\(0=\left(x-5\right)^5-\left(x-5\right)^4\)
\(\left(x-5\right)^4\left(x-5-1\right)=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\x-6=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
\(0=\left(x-5\right)^5-\left(x-5\right)^4\)
\(\left(x-5\right)^4\left(x-5-1\right)=0\)
\(\orbr{\begin{cases}\left(x-5\right)^4=0\\x-6=0\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=6\end{cases}}\)
a,
\(2^x=32\)
\(2^x=2^5\)
\(\Rightarrow x=5\)
b,
2x = 124
x = 62
c,
\(x^{15}-x=0\)
\(x\left(x^{14}-1\right)=0\)
\(\orbr{\begin{cases}x=0\\x^{14}-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
a. 2x.4=128
2x =32
=> x = 5
b. 2x+1=125
2x = 125-1
2x = 124
x = 62
c. x15=x
=> x \(\in\left\{0;\pm1\right\}\)
a) \(63^7< 64^7=\left(2^6\right)^7=2^{42}< 2^{48}=\left(2^4\right)^{12}=16^{12}\Rightarrow63^7< 16^{12}\)
b) \(3^{151}>3^{150}=\left(3^2\right)^{75}=9^{75}>8^{75}=\left(2^3\right)^{75}=2^{225}\)
c) \(9^{20}=\left(3^2\right)^{20}=3^{40}>3^{39}=\left(3^3\right)^{13}=27^{13}\Rightarrow9^{20}>27^{13}\)
bài 2:
a)\(2^x=32\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
b)\(2x+3^4=7^2\Leftrightarrow2x+81=49\Leftrightarrow2x=-32\Leftrightarrow x=-16\)
c)\(12x-33=3^2\Leftrightarrow12x-33=9\Leftrightarrow12x=42\Leftrightarrow x=\frac{7}{2}\)
\(a,x^{10}=1\Leftrightarrow x=1\)
b, 2x = 256 <=> 2x = 28 <=> x = 8
c, x10 = x
<=> \(x^{10}-x=0\)
<=> \(x\left[x^9-1\right]=0\)
<=> x = 0 hoặc x = 1
d, \((2x-15)^5=(2x-15)^3\)
<=> \((2x-15)^5-(2x-15)^3=0\)
<=> \((2x-15)^2.\left[1-(2x-15)^3\right]=0\)
<=> \(\orbr{\begin{cases}2x-15=0\\1-(2x-15)^3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{15}{2}\\2x-15=\pm1\end{cases}}\)
Tìm nốt x đi .
Lâu lâu chưa dạng gặp dạng này
e) \(\frac{11.3^{22}.9.35-9.15}{\left(2.3^{14}\right)^2}\)
\(=\frac{11.3^{22}.3^2.5.7-3^2.3.5}{2^2.3^{28}}\)
\(=\frac{3^3.5.\left(11.3^{20}.7-1\right)}{2^2.3^{28}}\)
\(=\frac{5.\left(11.3^{20}.7-1\right)}{2^2.3^{25}}\)
Đề bài sai ko vậy ?? kết quả ko có ra phân số hoặc số nguyên mà là số mà bạn chưa học đâu
5^6+5^7+5^8
=5^6.(1+5+5^2)
=5^6.31 chia hết cho 31
7^6+7^5-7^4
=7^4.(7^2+7-1)
=7^4.55 chia hết cho 11
BÀI 2:
a) \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\) \(⋮\)\(31\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)
c) \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)
d) mk chỉnh đề
\(1+2+2^2+2^3+...+2^{59}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)
\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)
a)
2x.4=128
2x =128:4
2x =32
x =16
b)
(2x+1)=125
2x =125-1
2x =124
x = 6
c)
x15=x
x =15
d)
(x-5)4=(x-5)5
x =5
c mik làm sai
d thiếu
x=6 nữa