Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có:
|5x-3| lớn hơn hoặc bằng 7
=> 5x-3 lớn hơn hoặc bằng 7 hoặc 5x-3 lớn hơn hoặc bằng -7
=> x lớn hơn hoặc bằng 2 hoặc x lớn hơn hoặc bằng 4/15
PS mình ko ghi đc dấu lớn hơn hoặc bằng
Ta có: \(\left|5x-3\right|\ge7\)
\(\Rightarrow\orbr{\begin{cases}5x-3\ge7\\5x-3\ge-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}5x\ge10\\5x\ge-4\end{cases}\Rightarrow\orbr{\begin{cases}x\ge2\\x\ge-\frac{4}{5}\end{cases}}}\)
_Học tốt_
Theo bài ra , ta có :
\(\left|5x-3\right|\ge7\)
\(\Rightarrow\orbr{\begin{cases}5x-3\ge7\\5x-3\ge-7\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x\ge2\\x\ge\frac{4}{5}\end{cases}}\)
Vậy \(\orbr{\begin{cases}x\ge2\\x\ge\frac{4}{5}\end{cases}}\)
Ta có:\(\left|5x-3\right|=\left[{}\begin{matrix}5x-3\left(x\ge0\right)\\-\left(5x-3\right)=3-5x\left(x< 0\right)\end{matrix}\right.\)
Do đó, ta có 2 TH:
TH1:
\(5x-3-x\ge7\left(x\ge0\right)\\ \Leftrightarrow4x\ge7+3\\ \Leftrightarrow4x\ge10\\ \Leftrightarrow x\ge2,5\left(t/m\right)\)
TH2:
\(3-5x-x\ge7\left(x< 0\right)\\ \Leftrightarrow-6x\ge7-3\\ \Leftrightarrow-6x\ge4\\ \Leftrightarrow x\le-\dfrac{2}{3}\left(t/m\right)\)
Vậy \(x\ge2,5\) hoặc \(x\le-\dfrac{2}{3}\)
a: \(\Leftrightarrow\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{216}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)
=>x+329=0
hay x=-329
b: =>5x-3>=7 hoặc 5x-3<=-7
=>5x>=10 hoặc 5x<=-4
=>x>=2 hoặc x<=-4/5
a/\(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=0+\frac{1}{3}\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
=>\(x+\frac{3}{4}=\frac{1}{3}\)hoặc \(x+\frac{3}{4}=-\frac{1}{3}\)
=>x=\(-\frac{5}{12}\)hoặc x=\(-\frac{13}{12}\)
\(|x+\frac{3}{4}|-\frac{1}{3}=0\)
\(|x+\frac{3}{4}|=\frac{1}{3}\)
\(\Rightarrow x+\frac{3}{4}=\frac{1}{3}\)
\(x=\frac{1}{3}-\frac{3}{4}\)
\(x=-\frac{5}{12}\)
\(x+\frac{3}{4}=-\frac{1}{3}\)
\(x=-\frac{1}{3}-\frac{3}{4}\)
\(x=-\frac{13}{12}\)
\(\left|5x-3\right|\ge7\)
\(\Rightarrow\orbr{\begin{cases}5x-3\le-7\\7\le5x-3\end{cases}\Rightarrow}\orbr{\begin{cases}5x\le-4\\10\le5x\end{cases}}\Rightarrow\orbr{\begin{cases}x\le\frac{-4}{5}\\2\le x\end{cases}}\)