Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
Ta có: \(A=\left(1+\dfrac{2}{3}\right)\cdot\left(1+\dfrac{2}{5}\right)\cdot\left(1+\dfrac{2}{7}\right)\cdot...\cdot\left(1+\dfrac{2}{2021}\right)\)
\(=\dfrac{5}{3}\cdot\dfrac{7}{5}\cdot\dfrac{9}{7}\cdot...\cdot\dfrac{2023}{2021}\)
\(=\dfrac{2023}{3}\)
Giải:
a) \(y^2=3-\left|2x-3\right|\)
Vì \(-\left|2x-3\right|\le0\forall x\) nên \(3-\left|2x-3\right|\le3\forall x\) nên \(y^2\le3\rightarrow y^2\in\left\{0;1\right\}\) (vì \(y\in Z\) )
TH1:
\(y^2=0\)
\(\Rightarrow y=0\)
\(\Rightarrow\left|2x-3\right|=3\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
TH2:
\(y^2=1\)
\(\Rightarrow y=\pm1\)
1. 25 . 3x-3 = 2025
3x-3 = 2025 : 25
3x-3 = 81
3x-3 = 34
=> x - 3 = 4
x = 4 + 3
x = 7
Vậy x = 7
2. Chứng minh:
M = 2 + 22 + 23 +...+298
M = ( 2 + 22 ) + ( 23 + 24 ) +...+ ( 297 + 298 )
M = 2.( 1 + 2 ) + 23.( 1 + 2 ) +...+ 297.( 1 + 2 )
M = 2.3 + 23.3 +...+ 297.3 \(⋮\)3
=> M\(⋮\)3
\(=>2^{x-1}-1=24-9\)
\(2^{x-1}-1=15\)
\(2^{x-1}=16\)
\(=>x-1=4\)
\(x=5\)
`2^(x-1) -1 = 24 - [3^2 - (2021^0 -1)]`
`=> 2^(x-1) -1 = 24 - [ 9 - (1-1)]`
`=> 2^(x-1) -1 = 24 - 9`
`=> 2^(x-1) -1 = 15`
`=> 2^(x-1) =15+1`
`=> 2^(x-1) = 16`
`=> 2^(x-1) = 2^4`
`=> x-1=4`
`=> x=4+1`
`=> x=5`
\(x_1+x_2=x_3+x_4=...=x_{2019}+x_{2020}=2\Rightarrow x_1+x_2+x_3+x_4+...+x_{2019}+x_{2020}=2.1010=2020\)
\(\Rightarrow x_1+x_2+x_3+x_4+...+x_{2019}+x_{2020}+x_{2021}=2020+x_{2021}\)
\(\Rightarrow0=2020+x_{2021}\)
\(\Rightarrow x_{2021}=-2020\)
Vậy \(x_{2021}=-2020\)