\(2009-\left|x-2009\right|=x\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2019

2009 - |x - 2009| = x

<=> |x - 2009| = 2009 - x

Dễ thấy: x - 2009 là số đối của 2009 - x

=> |x - 2009| = 2009 - x

=> x - 2009 ≤ 0

=> x ≤ 2009

19 tháng 7 2019
2009-x=|x-2009| đk 2009-x>=0. Suy ra x<=2009 . Vậy x =2009 (tm)
8 tháng 12 2018

\(\hept{\begin{cases}\left|x+\frac{1}{2009}\right|\ge0\\....\\\left|x+\frac{2008}{2009}\right|\ge0\end{cases}\Rightarrow\left|x+\frac{1}{2009}\right|+\left|x+\frac{2}{2009}\right|+....\left|x+\frac{2008}{2009}\right|\ge0}\)

\(\Rightarrow2009x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2009}\right|=x+\frac{1}{2009}\\....\\\left|x+\frac{2008}{2009}\right|=x+\frac{2008}{2009}\end{cases}\Rightarrow x+\frac{1}{2009}+...+x+\frac{2008}{2009}}=2009x\)

\(2008x+201840=2009x\Rightarrow x=201840\)

p/s: cách làm thì khá ok, nhưng kq không chắc lắm nhé, có gì bn tính lại nha

8 tháng 12 2018

Boul đẹp trai_tán gái đổ 100% sai 100%

Sao dòng cuối lại tek ? Các phân số ấy cộng vào không thể là 201840

Về hướng làm thì đúng nhưng chỉ đúng đến bước phá trị thôi 

Tham khảo cách làm nhưg nhớ đổi đoạn cuối nhé !

6 tháng 12 2019

a) 2009 - |x - 2009| = x

 => |x - 2009| = 2009 - x (1)

ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)

Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)

Vậy x = 0

b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

22 tháng 12 2019

\(\text{b)}\)

\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)

             \(\left(y-\frac{2}{5}\right)^{2020}\ge0\)

        \(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)

\(\text{Dấu "=" xảy ra khi:}\)   

     \(\left(2x-1\right)^{2018}=0\) 

\(\Rightarrow2x-1\)         \(=0\)

\(\Rightarrow2x\)                  \(=1\)

\(\Rightarrow x\)                     \(=\frac{1}{2}\)

\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)

\(\Rightarrow y-\frac{2}{5}\)          \(=0\)

\(\Rightarrow y\)                      \(=\frac{2}{5}\)

\(\text{Nhớ k cho mình với nghe}\)     :33

13 tháng 3 2018

\(a)\) \(\left|\left|3x-3\right|2x+\left(-1\right)^{2016}\right|=3x+2017^0\)

\(\Leftrightarrow\)\(\left|\left|3x-3\right|2x+1\right|=3x+1\)

Mà \(\left|\left|3x-3\right|2x+1\right|\ge0\) nên \(3x+1\ge0\)\(\Rightarrow\)\(x\ge1\)

\(\Leftrightarrow\)\(\left|3x-3\right|2x+1=3x+1\)

\(\Leftrightarrow\)\(\left|3x-3\right|=\frac{3x}{2x}\)

\(\Leftrightarrow\)\(\left|3x-3\right|=\frac{3}{2}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}3x-3=\frac{3}{2}\\3x-3=\frac{-3}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=\frac{9}{2}\\3x=\frac{3}{2}\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{9}{2}:3\\x=\frac{3}{2}:3\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\left(tmx\ge1\right)\\x=\frac{1}{2}\left(loai\right)\end{cases}}}\)

Vậy \(x=\frac{3}{2}\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

28 tháng 12 2015

(|x|-2011)(n+2008)(n+2009)=-(23-32)2009=-(-1)2009=1=1(n+2008)(n+2009)

=>|x|-2011=1

|x|=1+2011

|x|=2012

=>x=2012 hoặc x=-2012

20 tháng 10 2017

a)

\(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy \(x\le2009\)

b)

Vì \(\left(2x+1\right)^{2008}\ge0\forall x\)

\(\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)

Mà theo đề bài :

\(\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Rightarrow\left(2x+1\right)^{2008}=0;\left(y-\dfrac{2}{5}\right)^{2008}=0;\left|x+y-z\right|=0\)

*) Với \(\left(2x+1\right)^{2008}=0\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=\dfrac{-1}{2}\)

*) Với \(\left(y-\dfrac{2}{5}\right)^{2008}=0\)

\(\Rightarrow y-\dfrac{2}{5}=0\)

\(\Rightarrow y=\dfrac{2}{5}\)

*) Với \(\left|x+y-z\right|=0\)

\(\Rightarrow x+y-z=0\)

\(\Rightarrow\dfrac{-1}{2}+\dfrac{2}{5}-z=0\)

\(\Rightarrow\dfrac{-1}{10}-z=0\)

\(\Rightarrow z=\dfrac{-1}{10}\)

Vậy \(x=\dfrac{-1}{2};y=\dfrac{2}{5};z=\dfrac{-1}{10}\)

20 tháng 10 2017

a, 2009 - \(\left|x-2009\right|\) = x

=> \(\left|x-2009\right|\) = 2009 - x

=> \(\left[{}\begin{matrix}x-2009=2009-x\\x-2009=-2009-x\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=4018\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2009\\x=0\end{matrix}\right.\)

Vậy x \(\in\)n { 2009 ; 0 }

4 tháng 2 2016

Mình chưa học

123456789

duyệt đi