\(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}-\sqrt{9x-45}=4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

Đk: x >/ 5

pt đã cho \(\Leftrightarrow7\sqrt{x-2}-14\cdot\dfrac{\sqrt{x-2}}{7}-3\sqrt{x-5}=4\)

\(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-5}=4\)

\(\Leftrightarrow5\sqrt{x-2}-3\sqrt{x-5}=4\)

\(\Leftrightarrow5\sqrt{x-2}=4+3\sqrt{x-5}\)

\(\Leftrightarrow25x-50=16+9x-45+24\sqrt{x-5}\)

\(\Leftrightarrow16x-21=24\sqrt{x-5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}256x^2-672x+441=576x-2880\\x\ge\dfrac{21}{16}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}256x^2-1248x+3321=0\\x\ge\dfrac{21}{16}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}256x^2-1248x+3321=0\left(vn\right)\\x\ge\dfrac{21}{16}\end{matrix}\right.\)

Kl: ptvn

20 tháng 9 2017

a) \(\sqrt{25x+75}+3\sqrt{x-2}=2+4\sqrt{x+3}+\sqrt{9x-18}\) (ĐKXĐ : \(x\ge2\) )

\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}-4\sqrt{x+3}-3\sqrt{x-2}=2\)

\(\Leftrightarrow\sqrt{x+3}=2\)

\(\Leftrightarrow x+3=4\)

\(\Leftrightarrow x=1\) ( Thỏa mãn ĐKXĐ )

20 tháng 9 2017

c) \(\sqrt{4x+20}+\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\) (ĐKXĐ : \(x\ge-5\) )

\(\Leftrightarrow2\sqrt{x+5}+\sqrt{x+5}-\sqrt{x+5}=4\)

\(\Leftrightarrow2\sqrt{x+5}=4\)

\(\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=4\)

\(\Leftrightarrow x=-1\) ( Thỏa mãn ĐKXĐ )

Vậy.......

21 tháng 6 2018

Giải:

\(\sqrt{49x-98}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)

\(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

ĐKXĐ: \(x-2\ge0\Leftrightarrow x\ge2\)

\(7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)

\(\Leftrightarrow2\sqrt{x-2}=8\)

\(\Leftrightarrow\sqrt{x-2}=4\)

\(\Leftrightarrow x-2=16\)

\(\Leftrightarrow x=18\) (thỏa mãn)

Vậy ...

a: \(=2\sqrt{x-3}+3\sqrt{x-3}-4\sqrt{x-3}+3-x\)

\(=\sqrt{x-3}+3-x\)

c: \(\Leftrightarrow7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=18\)

=>2 căn x-2=18

=>x-2=81

=>x=83

20 tháng 6 2019

ĐKXĐ: \(x\ge2\)

Từ pt đã cho suy ra:

\(7\sqrt{x-2}-2\sqrt{x-2}=3\sqrt{x-2}+8\)

\(2\sqrt{x-2}=8\)\(x=18\)

26 tháng 9 2018

a)\(\Leftrightarrow\)\(7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)

 \(\Leftrightarrow\) \(3\sqrt{x-2}=8\)

  \(\Leftrightarrow\) \(\sqrt{x-2}=24\)

\(\Leftrightarrow\)\(x-2=576\)\(\Leftrightarrow x=578\)

c)\(\Leftrightarrow GTTĐ\left(x-1\right)=\sqrt{2}-1\)\(TH1:x-1>0\)

\(\Rightarrow x-1=\sqrt{2}-1\)\(\Leftrightarrow x=\sqrt{2}\)

\(TH2:x-1< 0\)

\(\Rightarrow1-x=\sqrt{2}-1\)

\(\Leftrightarrow x=2+\sqrt{2}\)

d)\(TH1:x-10=0\Rightarrow x=10\)

\(TH2:\sqrt{x-4}=0\Rightarrow x=4\)

câu b) thì mik cần thêm time

25 tháng 7 2019

\(\text{Câu 1: Sửa đề}\)

\( a)M = \left( {1 - \dfrac{{4\sqrt x }}{{x - 1}} + \dfrac{1}{{\sqrt x - 1}}} \right):\dfrac{{x - 2\sqrt x }}{{x - 1}}\\ M = \left[ {1 - \dfrac{{4\sqrt x }}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} + \dfrac{1}{{\sqrt x - 1}}} \right].\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \left[ {1 + \dfrac{{ - 4\sqrt x + \sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right].\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \left[ {1 + \dfrac{{ - 3\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}} \right].\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right) - 3\sqrt x + 1}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}.\dfrac{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}{{x - 2\sqrt x }}\\ M = \sqrt x \left( {\sqrt x - 3} \right).\dfrac{1}{{x - 2\sqrt x }}\\ M = \dfrac{{x - 3\sqrt x }}{{x - 2\sqrt x }} \)

\( b)M = \dfrac{1}{2} \Rightarrow \dfrac{{x - 3\sqrt x }}{{x - 2\sqrt x }} = \dfrac{1}{2}\\ \Leftrightarrow 2\left( {x - 3\sqrt x } \right) = x - 2\sqrt x \\ \Leftrightarrow 2x - 6\sqrt x = x - 2\sqrt x \\ \Leftrightarrow - 4\sqrt x = - x\\ \Leftrightarrow 16x = {x^2}\\ \Leftrightarrow 16x - {x^2} = 0\\ \Leftrightarrow x\left( {16 - x} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l} x = 0\\ 16 - x = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = 0\\ x = 16 \end{array} \right. \)

25 tháng 7 2019

\(\text{Câu 2}:\)

\( a)\sqrt {49x - 98} - 14\sqrt {\dfrac{{x - 2}}{{49}}} = 3\sqrt {x - 2} + 8\left( {x \ge 2} \right)\\ \Leftrightarrow 7\sqrt {x - 2} - 3\sqrt {x - 2} = 8 + 14\sqrt {\dfrac{{x - 2}}{{49}}} \\ \Leftrightarrow 4\sqrt {x - 2} = 8 + 14\sqrt {\dfrac{{x - 2}}{{49}}} \\ \Leftrightarrow 4\sqrt {x - 2} = 8 + 14\dfrac{{\sqrt {x - 2} }}{7}\\ \Leftrightarrow 4\sqrt {x - 2} = 8 + 2\sqrt {x - 2} \\ \Leftrightarrow 4\sqrt {x - 2} - 2\sqrt {x - 2} = 8\\ \Leftrightarrow 2\sqrt {x - 2} = 8\\ \Leftrightarrow \sqrt {x - 2} = 4\\ \Leftrightarrow x - 2 = 16\\ \Leftrightarrow x = 16 + 2 = 18 \text{(thỏa mãn điều kiện)} \)

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$

$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$

$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$

Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}=\frac{12}{5}$

$\Leftrightarrow x=5,76$ (thỏa mãn)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

b. ĐKXĐ: $x^2\geq 5$

PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$

$\Leftrightarrow \sqrt{x^2-5}=0$

$\Leftrightarrow x=\pm \sqrt{5}$