Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{35x^3-14x^2+55x^2-22x+35x-14+9}{5x-2}\)
\(=7x^2-11x+7+\dfrac{9}{5x-2}\)
b: \(=\dfrac{\left(2x-3\right)\left(4x^2+6x+9\right)}{2x-3}=4x^2+6x+9\)
a: \(8x\left(x-2017\right)-2x+4034=0\)
\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)
c: C=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2(x^2-4)
=250x^3+120x-2x^2+8
=250x^3-2x^2+120x+8
d: D=(4x)^3-3^3-(4x)^3-3^3
=64x^3-27-64x^3-27
=-54
c) \(C=\left(5x+2\right)^3+\left(5x-2\right)^3-2\left(x-2\right)\left(x+2\right)\)
\(=\left[\left(5x\right)^3+3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2+2^3\right]+\left[\left(5x\right)^3-3\cdot\left(5x\right)^2\cdot2+3\cdot5x\cdot2^2-2^3\right]-2\left(x^2-4\right)\)
\(=125x^3+150x^2+60x+8+125x^3-150x^2+60x-8-2x^2+8\)
\(=\left(125x^3+125x^3\right)+\left(150x^2-150x^2-2x^2\right)+\left(60x+60x\right)+\left(8-8+8\right)\)
\(=250x^3-2x^2+120x+8\)
d) \(D=\left(4x-3\right)\left(16x^2+12x+9\right)-\left(4x+3\right)\left(16x^2-12x+9\right)\)
\(=\left(4x\right)^3-3^3-\left[\left(4x\right)^3+3^3\right]\)
\(=64x^3-27-\left(64x^3+27\right)\)
\(=64x^3-27-64x^3-27\)
\(=-27-27\)
\(=-54\)
1/
a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)
\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)
\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)
\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)
\(D=x\)
b/ Mình xin sửa lại đề:
Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)
Tại x = 12
\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)
\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)
\(E\left(x\right)=2012-x\)
\(E\left(x\right)=2000\)
2/
a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
<=> \(2x^2-10x-3x-2x^2=26\)
<=> \(-13x=26\)
<=> \(x=-2\)
b/ Bạn vui lòng coi lại đề.
3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(D=-10\)
Vậy giá trị của D không phụ thuộc vào x (đpcm)
a) 5x(x - 2000) - x + 2000 = 0
=> 5x(x - 2000) - (x - 2000) = 0
=> (x - 2000).(5x - 1) = 0
=> x - 2000 = 0 hoặc 5x - 1 = 0
=> x = 2000 hoặc 5x = 1
=> x = 2000 hoặc x = 1/5
b) x3 - 13x = 0
=> x.(x2 - 13) = 0
=> x = 0 hoặc x2 - 13 = 0
=> x = 0 hoặc x2 = 13, vô lí
=> x = 0
a) 5x(x-2000)-(x-2000)=(5x-1)(x-2000)=0 nên x=1/5 hoặc x=2000
b)\(x^3-13x=x\left(x^2-13\right)=0\)\(\Rightarrow\)x=0 hoặc x^2=13 hay x=\(\sqrt{13}\)
Ta có pt <=> (x-3)(3x-1)(x2 -x+1) = 0
<=> x = 3 hoặc x = \(\frac{1}{3}\)