K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(a,\Rightarrow x^2+4x+25-x^2=3\\ \Rightarrow4x=-22\Rightarrow x=-\dfrac{11}{2}\\ b,\Rightarrow\left(2x-3-4x-3\right)\left(2x-3+4x+3\right)=0\\ \Rightarrow6x\left(-2x-6\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\end{matrix}\right.\)

a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(\Leftrightarrow6x-9+4-2x=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

1 tháng 10 2021

giải phần còn lại giúp mình được ko?

1:

a: =>(|x|+4)(|x|-1)=0

=>|x|-1=0

=>x=1; x=-1

b: =>x^2-4>=0

=>x>=2 hoặc x<=-2

d: =>|2x+5|=2x-5

=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0

=>x=0(loại)

`@` `\text {Ans}`

`\downarrow`

`a)`

`3x ( 12x - 4 ) - 9x( 4x - 3 ) = 30`

`=> 3x (12x-4) - 3*3x (4x - 3) = 30`

`=> 3x [12x - 4 - 3(4x-3)] = 30`

`=> 3x (12x - 4 - 12x + 9) = 30`

`=> 3x (-4+9)=30`

`=> 3x*5=30`

`=> 3x=6`

`=> x=2`

Vậy, `x=2`

`b)`

`x( 5 - 2x) + 2x( x - 1)`

`=> x(5-2x) + 2x^2 - 2x=15`

`=> 5x - 2x^2 + 2x^2 - 2x =15`

`=> 3x = 15`

`=> x=5`

Vậy, `x=5.`

a: =>36x^2-12x-36x^2+27x=30

=>15x=30

=>x=2

b: =>5x-2x^2+2x^2-2x=15

=>3x=15

=>x=5

6 tháng 11 2021

a) \(\Rightarrow x^2+4x+25-x^2=3\Rightarrow4x=-22\Rightarrow x=-\dfrac{11}{2}\)

b) \(\Rightarrow\left(4x+3-2x+3\right)\left(4x+3+2x-3\right)=0\)

\(\Rightarrow2\left(x+3\right).6x=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)

1 tháng 7 2021

\(a,\) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+6\)

\(< =>20x-5x^2+5x^2-12-x-6=0\)

\(< =>19x-18=0\)

\(< =>x=\dfrac{18}{19}\)

\(b,\left(2x-7\right)\left(5+4x\right)-8\left(x^2-4x+5\right)=-30\)

\(< =>10x+8x^2-35-28x-8x^2+24x-40+30=0\)

\(< =>6x-45=0< =>x=\dfrac{45}{6}=7,5\)

1 tháng 7 2021

a) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+\Rightarrow6\\ \Leftrightarrow20x-5x^2+5x^2-12=x+6\\ \Leftrightarrow20x-12=x+6\\\Rightarrow20x-x=6+12\\ \Rightarrow19x=18\\ \Rightarrow x=\dfrac{18}{19}\)

b) \(\left(2x-7\right)\left(5+4x\right)-8\left(x^2-3x+5\right)=-30\\ \Rightarrow10x+8x^2-35-28x-8x^2+24x-40=-30\\ \Rightarrow6x-75=-30\\ \Rightarrow6x=45\\ \Rightarrow x=\dfrac{15}{2}\)

a) Ta có: \(8x\left(2x-3\right)-4x\left(4x+3\right)=72\)

\(\Leftrightarrow16x^2-24x-16x^2-12x=72\)

\(\Leftrightarrow-36x=72\)

hay x=-2

b) Ta có: \(\left(x+2\right)\left(x+4\right)-x\left(x+2\right)=104\)

\(\Leftrightarrow x^2+6x+8-x^2-2x=104\)

\(\Leftrightarrow4x=96\)

hay x=24

c) Ta có: \(\left(x-1\right)\left(x+4\right)-x\left(x-1\right)=308\)

\(\Leftrightarrow x^2+3x-4-x^2+x=308\)

\(\Leftrightarrow4x=312\)

hay x=78

d) Ta có: \(15x\left(2x-3\right)-\left(5x+2\right)\left(6x-5\right)=-22\)

\(\Leftrightarrow30x^2-45x-30x^2+25x-12x+10=-22\)

\(\Leftrightarrow-32x=-32\)

hay x=1

27 tháng 2 2021

`a,x(x-1)-(x+2)^2=1`

`<=>x^2-x-x^2-4x-4=1`

`<=>-5x=5`

`<=>x=-1`

`b,(x+5)(x-3)-(x-2)^2=-1`

`<=>x^2+2x-15-x^2+4x-4+1=0`

`<=>6x-18=0`

`<=>x-3=0`

`<=>x=3`

`c,x(2x-4)-(x-2)(2x+3)=0`

`<=>2x(x-2)-(x-2)(2x+3)=0`

`<=>(x-2)(2x-2x-3)=0`

`<=>-3(x-2)=0`

`<=>x-2=0`

`<=>x=2`

`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`

`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`

`<=>4x+26=-12`

`<=>4x=-38`

`<=>x=-19/2`

22 tháng 10 2023

\(a,(x-2)^2-25=0\\\Leftrightarrow (x-2)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)

\(---\)

\(b,4x(x-2)+x-2=0\\\Leftrightarrow4x(x-2)+(x-2)=0\\\Leftrightarrow(x-2)(4x+1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{1}{4}\end{matrix}\right.\)

\(---\)

\(c,4x(x-2)-x(3+4x)(?)\)

\(d,(2x-5)^2-3x(5-2x)=0\\\Leftrightarrow(2x-5)^2+3x(2x-5)=0\\\Leftrightarrow(2x-5)(2x-5+3x)=0\\\Leftrightarrow(2x-5)(5x-5)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\5x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=1\end{matrix}\right.\)

\(---\)

\(e,x^2-25-(x+5)=0(sửa.đề)\\\Leftrightarrow(x^2-5^2)-(x+5)=0\\\Leftrightarrow (x-5)(x+5)-(x+5)=0\\\Leftrightarrow(x+5)(x-5-1)=0\\\Leftrightarrow(x+5)(x-6)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)

\(---\)

\(f,5x(x-3)-x+3=0\\\Leftrightarrow5x(x-3)-(x-3)=0\\\Leftrightarrow(x-3)(5x-1)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

\(Toru\)

a: Ta có: \(4\left(2-x\right)+x\left(x+6\right)=x^2\)

\(\Leftrightarrow8-4x+x^2+6x-x^2=0\)

\(\Leftrightarrow2x=-8\)

hay x=-4

b: Ta có: \(x\left(x-7\right)-\left(x-2\right)\left(x+5\right)=0\)

\(\Leftrightarrow x^2-7x-x^2-3x+10=0\)

\(\Leftrightarrow-10x=-10\)

hay x=1

c: Ta có: \(\left(2x+3\right)\left(3-2x\right)+\left(2x-1\right)^2=2\)

\(\Leftrightarrow9-4x^2+4x^2-4x+1=2\)

\(\Leftrightarrow-4x=-8\)

hay x=2