Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Đặt \(f\left(x\right)=\dfrac{\left(x-2\right)\left(x-3\right)}{x+1}\)
- Lập bảng xét dấu :
- Từ bảng xét dấu :
+, Để f(x) < 0 \(\Leftrightarrow\left[{}\begin{matrix}x< -1\\2< x< 3\end{matrix}\right.\)
Vậy ...
a) \(\dfrac{x.2}{-15}=\dfrac{-5}{3}\)
\(\dfrac{x.2}{-15}=\dfrac{25}{-15}\)
x.2=25
x=12,5
b) \(\dfrac{x-1}{-12}=\dfrac{-3}{x-1}\)
(x-1)2=-3.(-12)
(x-1)2=36
⇒(x-1)2\(\Rightarrow\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
a.\(\dfrac{1}{3}\) + x = \(\dfrac{5}{6}\)
x = \(\dfrac{5}{6}\) - \(\dfrac{1}{3}\)
x = \(\dfrac{1}{2}\)
b. | x-1| - \(\dfrac{2}{5}\) = \(\dfrac{11}{10}\)
| x-1| = \(\dfrac{11}{10}\) + \(\dfrac{2}{5}\)
|x-1| = \(\dfrac{3}{2}\)
\(\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=-\dfrac{3}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}+1\\x=-\dfrac{3}{2}+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c, \(\dfrac{1}{3}\) + \(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = 1
\(\dfrac{2}{3}\) (\(\dfrac{x}{2}\) + 3) = 1 - \(\dfrac{1}{3}\)
\(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = \(\dfrac{2}{3}\)
\(\dfrac{x}{2}\) + 3 = 1
\(\dfrac{x}{2}\) = 1 - 3
\(\dfrac{x}{2}\) = -2
\(x\) = -4
d, \(\dfrac{x+2}{3}\) = \(\dfrac{27}{x+2}\)
(x+2)2 = 27.3
(x+2) =92
\(\left[{}\begin{matrix}x+2=9\\x+2=-9\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x=-11\end{matrix}\right.\)
a) \(\dfrac{1}{2}+\dfrac{2}{3}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{2}{3}x=-\dfrac{1}{4}\\ \Rightarrow x=-\dfrac{3}{8}\)
b) \(2\dfrac{2}{3}:x=1\dfrac{7}{9}:0,02\\ \Rightarrow2\dfrac{2}{3}:x=\dfrac{800}{9}\\ \Rightarrow x=\dfrac{3}{100}\)
c) \(x^x-x+1=1\\ \Rightarrow x^x-x=0\\ \Rightarrow x^x=x\\ \Rightarrow x=1\)
d) \(5-\left|3x-1\right|=3\\ \Rightarrow\left|3x-1\right|=2\\ \Rightarrow\left[{}\begin{matrix}3x-1=-2\\3x-1=2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
a) Ta có: \(\left(2x-3\right)-\left(x-5\right)=\left(x+2\right)-\left(x-1\right)\)
\(\Leftrightarrow2x-3-x+5=x+2-x+1\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
b) Ta có: \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2x-2-5x-10=-10\)
\(\Leftrightarrow-3x=-10+10+2=2\)
hay \(x=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
a, (2x - 3) - (x - 5) = (x + 2) - (x - 1)
2x - 3 - x + 5 = x + 2 - x + 1
(2x - x) + (-3 + 5) = (x - x) + (2 + 1)
x + 2 = 3
x = 1
a: \(\Leftrightarrow\left(x-1\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
a) \(1=\left(2x+0,5\right)^{600}\)
\(\Rightarrow1^{600}=\left(2x+0,5\right)^{600}\)
\(\Rightarrow\left[{}\begin{matrix}2x+0,5=1\\2x+0,5=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=0,5\\2x=-1,5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0,25\\x=-0,75\end{matrix}\right.\)
b) \(\left(x-0,125\right)^2=0,25\)
\(\Rightarrow\left(x-0,125\right)^2=0,5^2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,125=0,5\\x-0,125=-0,5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0,625\\x=-0,375\end{matrix}\right.\)
c) \(\left(x-3\right)^{11}=\left(x-3\right)^{41}\)
\(\Rightarrow\left(x-3\right)^{11}-\left(x-3\right)^{41}=0\)
\(\Rightarrow\left(x-3\right)^{11}\left[1-\left(x-3\right)^{30}\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^{11}=0\\\left(x-3\right)^{30}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-3=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`1 = (2x + 0,5)^600`
`=> (2x+0,5)^600 = (+-1)^600`
`=> \text {TH1: } 2x + 0,5 = 1`
`=> 2x = 1 - 0,5`
`=> 2x = 0,5`
`=> x = 0,5 \div 2`
`=> x = 0,25`
`\text {TH2: } 2x + 0,5 = -1`
`=> 2x = -1 - 0,5`
`=> 2x = -1,5`
`=> x = -1,5 \div 2`
`=> x = -0,75`
Vậy, `x \in {-0,75; 0,25}.`
`b)`
`(x - 0,125)^2 = 0,25`
`=> (x - 0,125)^2 = (+-0,5)^2`
`=> `\(\left[{}\begin{matrix}x-0,125=0,5\\x-0,125=-0,5\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0,5+0,125\\x=-0,5+0,125\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0,625\\x=-0,375\end{matrix}\right.\)
Vậy, `x \in {-0,375; 0,625}.`
`c)`
`(x - 3)^11 = (x - 3)^41`
`=> (x - 3)^11 - (x - 3)^41 = 0`
`=> (x - 3)^11 * [ 1 - (x - 3)^30] = 0`
`=>`\(\left[{}\begin{matrix}\left(x-3\right)^{11}=0\\1-\left(x-3\right)^{30}=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{30}=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy, `x \in {3; 4}.`
a: =>x*7/4+3/2=-4/5
=>x*7/4=-4/5-3/2=-8/10-15/10=-23/10
=>x=-23/10:7/4=-23/10*4/7=-92/70=-46/35
b: =>x*9/20=1/7+1/8=15/56
=>x=15/56:9/20=15/56*20/9=25/42
c: |x|=3,5
=>x=3,5 hoặc x=-3,5
d: |x|=-2,7
=>x thuộc rỗng
e: =>|x-1|=3-0,73=2,27
=>x-1=2,27 hoặc x-1=-2,27
=>x=-1,27 hoặc x=3,27
f: \(\Leftrightarrow7\cdot11x+11=0\)
=>77x=-11
=>x=-1/7
l: =>|x+3/4|=-2+5=3
=>x+3/4=3 hoặc x+3/4=-3
=>x=-15/4 hoặc x=9/4